Spin-wave propagation through a magnonic crystal in a thermal gradient

被引:15
|
作者
Langner, Thomas [1 ]
Bozhko, Dmytro A. [1 ]
Bunyaev, Sergiy A. [2 ]
Kakazei, Gleb N. [2 ]
Chumak, Andrii, V [1 ]
Serga, Alexander A. [1 ]
Hillebrands, Burkard [1 ]
Vasyuchka, Vitaliy, I [1 ]
机构
[1] Tech Univ Kaiserslautern, Fachbereich Phys & Landesforschungszentrum OPTIMA, D-67663 Kaiserslautern, Germany
[2] Univ Porto, IFIMUP IN Dept Fis & Astron, P-4169007 Porto, Portugal
关键词
spin-wave; magnonic crystal; thermal gradient;
D O I
10.1088/1361-6463/aad2ac
中图分类号
O59 [应用物理学];
学科分类号
摘要
The properties of a magnonic crystal are expected to be strongly influenced by the presence of a thermal gradient. We investigated the propagation of backward volume and surface magnetostatic spin-waves in a ID magnonic crystal (MC) exposed to a continuous spatial temperature gradient. It is shown that the thermal gradient applied along the propagation direction leads to a frequency shift and a modification of the transmission characteristics of the spin-waves. The frequency shift is caused by a variation in saturation magnetization due to the change in absolute temperature. The altered transmission manifests itself in a broadening of MC band gaps and the corresponding narrowing of the MC passbands and is understood to be a result of a spatial transformation of the spin-waves wavelengths in a thermal gradient. Furthermore, the transmission characteristics of spin-waves in a thermal gradient have been verified by numerical calculations based on the approach of the transmission matrix. The results of the calculations demonstrate a good agreement with the experimentally measured data.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Lateral Spin-Wave Transport in a System of Nonidentical Magnonic-Crystal Microwave Guides
    V. A. Gubanov
    S. E. Sheshukova
    A. V. Sadovnikov
    Physics of the Solid State, 2021, 63 : 1361 - 1365
  • [32] Magnonic crystal theory of the spin-wave frequency gap in low-doped manganites
    Krawczyk, M.
    Puszkarski, H.
    Journal of Applied Physics, 2006, 100 (07):
  • [33] A spin-wave logic gate based on a width-modulated dynamic magnonic crystal
    Nikitin, Andrey A.
    Ustinov, Alexey B.
    Semenov, Alexander A.
    Chumak, Andrii V.
    Serga, Alexander A.
    Vasyuchka, Vitaliy I.
    Lahderanta, Erkki
    Kalinikos, Boris A.
    Hillebrands, Burkard
    APPLIED PHYSICS LETTERS, 2015, 106 (10)
  • [34] A switchable spin-wave signal splitter for magnonic networks
    Heussner, F.
    Serga, A. A.
    Braecher, T.
    Hillebrands, B.
    Pirro, P.
    APPLIED PHYSICS LETTERS, 2017, 111 (12)
  • [35] Magnonic noise in the parametric spin-wave pumping process
    Nishiwaki, Yuri
    Nezu, Shoki
    Sekiguchi, Koji
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2024, 63 (10)
  • [36] Magnonic crystal based forced dominant wavenumber selection in a spin-wave active ring
    Karenowska, A. D.
    Chumak, A. V.
    Serga, A. A.
    Gregg, J. F.
    Hillebrands, B.
    APPLIED PHYSICS LETTERS, 2010, 96 (08)
  • [37] Lateral Spin-Wave Transport in a System of Nonidentical Magnonic-Crystal Microwave Guides
    Gubanov, V. A.
    Sheshukova, S. E.
    Sadovnikov, A., V
    PHYSICS OF THE SOLID STATE, 2021, 63 (09) : 1361 - 1365
  • [38] An Iterative Solution for Spin-Wave Dispersion in a Magnonic Ring
    Kumar, N.
    Venkat, G.
    Prabhakar, A.
    IEEE TRANSACTIONS ON MAGNETICS, 2014, 50 (09)
  • [39] Dissipative Spin-Wave Diode and Nonreciprocal Magnonic Amplifier
    Zou, Ji
    Bosco, Stefano
    Thingstad, Even
    Klinovaja, Jelena
    Loss, Daniel
    PHYSICAL REVIEW LETTERS, 2024, 132 (03)
  • [40] Engineering spin-wave channels in submicrometer magnonic waveguides
    Xing, XiangJun
    Li, ShuWei
    Huang, XiaoHong
    Wang, ZhenGuo
    AIP ADVANCES, 2013, 3 (03)