Facile preparation of biocompatible poly(L-lactic acid)-modified halloysite nanotubes/poly(ε-caprolactone) porous scaffolds by solvent evaporation of Pickering emulsion templates

被引:20
|
作者
Hu, Yang [1 ,2 ]
Liu, Shuifeng [1 ,2 ]
Li, Xin [1 ]
Yuan, Teng [1 ]
Zou, Xiuju [1 ]
He, Yinyan [1 ]
Dong, Xianming [1 ,2 ]
Zhou, Wuyi [1 ,2 ]
Yang, Zhuohong [1 ]
机构
[1] South China Agr Univ, Coll Mat & Energy, Guangzhou 510642, Guangdong, Peoples R China
[2] South China Agr Univ, Biomass Printing Mat Res Ctr 3D, Guangzhou 510642, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
NANOCOMPOSITE SCAFFOLDS; ANTIBACTERIAL ACTIVITY; COMPOSITE SCAFFOLDS; MACROPOROUS SILICA; TISSUE; NANOTUBES; POLYCAPROLACTONE; REGENERATION; FABRICATION; NANOFIBERS;
D O I
10.1007/s10853-018-2588-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Biocompatible porous scaffolds with tunable microstructures and drug delivery ability have aroused increasing attention in the application of the biomedical fields, especially in tissue engineering. In this study, we have facilely fabricated the poly(L-lactic acid)-modified halloysite nanotubes (m-HNTs)/poly(E-caprolactone) (PCL) porous scaffolds by direct solvent evaporation of m-HNTs stabilized water in oil Pickering emulsion templates, which contain PCL in the oil phase. The obtained scaffolds have possessed the porous microstructures, which can be easily tailored by varying the preparation conditions of emulsion templates including m-HNTs concentrations and the volume ratios of water to oil. Furthermore, the antibacterial drug enrofloxacin (ENR) has been loaded into the scaffolds, and the in vitro release studies show the potential of m-HNTs/PCL porous scaffolds as drug carriers. And the antimicrobial test results have proved that the ENR-loaded porous scaffolds exhibit obvious and long-term antibacterial activity against Escherichia coli. In addition, mouse bone mesenchymal stem cells (mBMSCs) are cultured on the m-HNTs/PCL porous scaffolds, and the results of cell counting kit-8 assay and confocal laser scanning microscope observation show that the m-HNTs/PCL porous scaffolds are cytocompatible, because mBMSCs can attach, develop and proliferate well on the porous scaffolds. All the results indicate that the m-HNTs/PCL porous scaffolds hold great potential applications in tissue engineering as scaffolds and/or drug carriers.
引用
收藏
页码:14774 / 14788
页数:15
相关论文
共 50 条
  • [21] Preparation and characterization of biocompatible poly(L-lactic acid)/gelatin blend membrane
    Zhao, Xiaodong
    Liu, Wenguang
    Yao, Kangde
    Journal of Applied Polymer Science, 2006, 101 (01): : 269 - 276
  • [22] Rapid mineralization of hierarchical poly(l-lactic acid)/poly(ε-caprolactone) nanofibrous scaffolds by electrodeposition for bone regeneration
    Nie, Wei
    Gao, Yiming
    McCoul, David James
    Gillispie, Gregory James
    Zhang, YanZhong
    Liang, Li
    He, ChuangLong
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2019, 14 : 3929 - 3941
  • [23] Degradation of three dimensional poly(l-lactic acid) scaffolds modified by gelatin
    Zhang, Ye
    Liu, Hongming
    FUNCTIONAL MATERIALS, 2019, 26 (04): : 845 - 849
  • [24] Preparation of poly(D,L-lactic acid) scaffolds using alginate particles
    Yu, Guanhua
    Fan, Yubo
    JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2008, 19 (01) : 87 - 98
  • [25] Preparation of topographically modified poly(L-lactic acid)-b-Poly(ɛ-caprolactone)-b-poly(L-lactic acid) tri-block copolymer film surfaces and its blood compatibility
    Seung Il Kim
    Bo Ram Lee
    Jin Ik Lim
    Cho Hay Mun
    Youngmee Jung
    Ji-Heung Kim
    Soo Hyun Kim
    Macromolecular Research, 2014, 22 : 1229 - 1237
  • [26] Preparation of Topographically Modified Poly(L-lactic acid)-b-Poly(ε-caprolactone)-b-Poly(L-lactic acid) Tri-Block Copolymer Film Surfaces and Its Blood Compatibility
    Kim, Seung Il
    Lee, Bo Ram
    Lim, Jin Ik
    Mun, Cho Hay
    Jung, Youngmee
    Kim, Ji-Heung
    Kim, Soo Hyun
    MACROMOLECULAR RESEARCH, 2014, 22 (11) : 1229 - 1237
  • [27] Compressive mechanical properties and deformation behavior of porous polymer blends of poly(ε-caprolactone) and poly(l-lactic acid)
    Park, Joo-Eon
    Todo, Mitsugu
    JOURNAL OF MATERIALS SCIENCE, 2011, 46 (24) : 7850 - 7857
  • [28] Compressive mechanical properties and deformation behavior of porous polymer blends of poly(ε-caprolactone) and poly(l-lactic acid)
    Joo-Eon Park
    Mitsugu Todo
    Journal of Materials Science, 2011, 46 : 7850 - 7857
  • [29] Porous biodegradable blends of poly(L-lactic poly(ε-caprolactone):: polyester acid) and physical properties, morphology, and biodegradation
    Tsuji, Hideto
    Horikawa, Gen
    POLYMER INTERNATIONAL, 2007, 56 (02) : 258 - 266
  • [30] Biocompatibility and strengthening of porous hydroxyapatite scaffolds using poly(L-lactic acid) coating
    Lee, Junho
    Kim, Il-Kug
    Kim, Tae Gon
    Kim, Yong-Ha
    Park, Jin-Chul
    Kim, Youn-Jung
    Choi, Sik-Young
    Park, Mi-Young
    JOURNAL OF POROUS MATERIALS, 2013, 20 (04) : 719 - 725