Learning-Based Point Cloud Registration for 6D Object Pose Estimation in the Real World

被引:4
|
作者
Dang, Zheng [1 ]
Wang, Lizhou [2 ]
Guo, Yu [2 ]
Salzmann, Mathieu [1 ,3 ]
机构
[1] Ecole Polytech Fed Lausanne, CVLab, Lausanne, Switzerland
[2] Xi An Jiao Tong Univ, Xian, Shaanxi, Peoples R China
[3] Clearspace, Renens, Switzerland
来源
关键词
6D object pose estimation; Point cloud registration;
D O I
10.1007/978-3-031-19769-7_2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we tackle the task of estimating the 6D pose of an object from point cloud data. While recent learning-based approaches to addressing this task have shown great success on synthetic datasets, we have observed them to fail in the presence of real-world data. We thus analyze the causes of these failures, which we trace back to the difference between the feature distributions of the source and target point clouds, and the sensitivity of the widely-used SVD-based loss function to the range of rotation between the two point clouds. We address the first challenge by introducing a new normalization strategy, Match Normalization, and the second via the use of a loss function based on the negative log likelihood of point correspondences. Our two contributions are general and can be applied to many existing learning-based 3D object registration frameworks, which we illustrate by implementing them in two of them, DCP and IDAM. Our experiments on the real-scene TUD-L [26], LINEMOD [23] and Occluded-LINEMOD [T] datasets evidence the benefits of our strategies. They allow for the first time learning-based 3D object registration methods to achieve meaningful results on real-world data. We therefore expect them to be key to the future development of point cloud registration methods.
引用
收藏
页码:19 / 37
页数:19
相关论文
共 50 条
  • [31] 6D Pose Estimation from Point Cloud Using an Improved Point Pair Features Method
    Wang, Haoyu
    Wang, Hesheng
    Zhuang, Chungang
    2021 7TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND ROBOTICS (ICCAR), 2021, : 280 - 284
  • [32] On Object Symmetries and 6D Pose Estimation from Images
    Pitteri, Giorgia
    Ramamonjisoa, Michael
    Ilic, Slobodan
    Lepetit, Vincent
    2019 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2019), 2019, : 614 - 622
  • [33] Learning Symmetry-Aware Geometry Correspondences for 6D Object Pose Estimation
    Zhao, Heng
    Wei, Shenxing
    Shi, Dahu
    Tan, Wenming
    Li, Zheyang
    Ren, Ye
    Wei, Xing
    Yang, Yi
    Pu, Shiliang
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 13999 - 14008
  • [34] ConvPoseCNN: Dense Convolutional 6D Object Pose Estimation
    Capellen, Catherine
    Schwarz, Max
    Behnke, Sven
    PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VOL 5: VISAPP, 2020, : 162 - 172
  • [35] Graph neural network for 6D object pose estimation
    Yin, Pengshuai
    Ye, Jiayong
    Lin, Guoshen
    Wu, Qingyao
    KNOWLEDGE-BASED SYSTEMS, 2021, 218
  • [36] Generalizable and Accurate 6D Object Pose Estimation Network
    Fu, Shouxu
    Li, Xiaoning
    Yu, Xiangdong
    Cao, Lu
    Li, Xingxing
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT III, 2024, 14427 : 312 - 324
  • [37] Segmentation-driven 6D Object Pose Estimation
    Hu, Yinlin
    Hugonot, Joachim
    Fua, Pascal
    Salzmann, Mathieu
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 3380 - 3389
  • [38] 6D Object Pose Estimation for Robot Programming by Demonstration
    Ghahramani, Mohammad
    Vakanski, Aleksandar
    Janabi-Sharifi, Farrokh
    PROGRESS IN OPTOMECHATRONIC TECHNOLOGIES, 2019, 233 : 93 - 101
  • [39] RobotP: A Benchmark Dataset for 6D Object Pose Estimation
    Yuan, Honglin
    Hoogenkamp, Tim
    Veltkamp, Remco C.
    SENSORS, 2021, 21 (04) : 1 - 26
  • [40] Focal segmentation for robust 6D object pose estimation
    Ye, Yuning
    Park, Hanhoon
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (16) : 47563 - 47585