Enhanced Online Convolutional Neural Networks for Object Tracking

被引:0
|
作者
Zhang, Dengzhuo [1 ]
Gao, Yun [1 ,2 ]
Zhou, Hao [1 ]
Li, Tianwen [3 ]
机构
[1] Yunnan Univ, Sch Informat Sci & Engn, Kunming, Yunnan, Peoples R China
[2] Kunming Inst Phys, Kunming, Yunnan, Peoples R China
[3] Kunming Univ Sci & Technol, Fac Sci, Kunming, Yunnan, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
object tracking; online convolution neural network; k-means plus; error back-propagation;
D O I
10.1117/12.2310122
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent several years, object tracking based on convolution neural network has gained more and more attention. The initialization and update of convolution filters can directly affect the precision of object tracking effective. In this paper, a novel object tracking via an enhanced online convolution neural network without offline training is proposed, which initializes the convolution filters by a k-means++ algorithm and updates the filters by an error back-propagation. The comparative experiments of 7 trackers on 15 challenging sequences showed that our tracker can perform better than other trackers in terms of AUC and precision.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Zebrafish tracking using convolutional neural networks
    Zhiping XU
    Xi En Cheng
    Scientific Reports, 7
  • [42] Convolutional neural net bagging for online visual tracking
    Li, Hanxi
    Li, Yi
    Porikli, Fatih
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2016, 153 : 120 - 129
  • [43] ONLINE VIDEO TRACKING USING COLLABORATIVE CONVOLUTIONAL NETWORKS
    Guan, Hao
    Xue, Xiangyang
    An Zhiyong
    2016 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO (ICME), 2016,
  • [44] AN ENSEMBLE OF DEEP NEURAL NETWORKS FOR OBJECT TRACKING
    Zhou, Xiangzeng
    Xie, Lei
    Zhang, Peng
    Zhang, Yanning
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 843 - 847
  • [45] Single online visual object tracking with enhanced tracking and detection learning
    Yang Yi
    Liping Luo
    Zhenxian Zheng
    Multimedia Tools and Applications, 2019, 78 : 12333 - 12351
  • [46] Convolutional Neural Network with Structural Input for Visual Object Tracking
    Fiaz, Mustansar
    Mahmood, Arif
    Jung, Soon Ki
    SAC '19: PROCEEDINGS OF THE 34TH ACM/SIGAPP SYMPOSIUM ON APPLIED COMPUTING, 2019, : 1345 - 1352
  • [47] Visual Object Tracking Based on Bilinear Convolutional Neural Network
    Zhang Chunting
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (04)
  • [48] Object Tracking in the Video Stream by Means of a Convolutional Neural Network
    Zolotukhin, Yu N.
    Kotov, K. Yu
    Nesterov, A. A.
    Semenyuk, E. D.
    OPTOELECTRONICS INSTRUMENTATION AND DATA PROCESSING, 2020, 56 (06) : 642 - 648
  • [49] Single online visual object tracking with enhanced tracking and detection learning
    Yi, Yang
    Luo, Liping
    Zheng, Zhenxian
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (09) : 12333 - 12351
  • [50] Object Tracking in the Video Stream by Means of a Convolutional Neural Network
    Yu. N. Zolotukhin
    K. Yu. Kotov
    A. A. Nesterov
    E. D. Semenyuk
    Optoelectronics, Instrumentation and Data Processing, 2020, 56 : 642 - 648