Categorical homotopy theory

被引:27
|
作者
Jardine, J. F. [1 ]
机构
[1] Univ Western Ontario, Dept Math, London, ON N6A 5B7, Canada
关键词
test categories; weak equivalence classes; cubical sets and presheaves;
D O I
10.4310/HHA.2006.v8.n1.a3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is an exposition of the ideas and methods of Cisinksi, in the context of A-presheaves on a small Grothendieck site, where A is an arbitrary test category in the sense of Grothendieck. The homotopy theory for the category of simplicial presheaves and each of its localizations can be modelled by A-presheaves in the sense that there is a corresponding model structure for A-presheaves with an equivalent homotopy category. The theory specializes, for example, to the homotopy theories of cubical sets and cubical presheaves, and gives a cubical model for motivic homotopy theory. The applications of Cisinski's ideas are explained in some detail for cubical sets.
引用
下载
收藏
页码:71 / 144
页数:74
相关论文
共 50 条
  • [21] A generalised homotopy theory
    Duma, Adrian
    Nonlinear Analysis, Theory, Methods and Applications, 1997, 30 (08): : 4937 - 4948
  • [22] SIMPLICIAL HOMOTOPY THEORY
    CURTIS, EB
    ADVANCES IN MATHEMATICS, 1971, 6 (02) : 107 - &
  • [23] A homotopy theory for stacks
    Sharon Hollander
    Israel Journal of Mathematics, 2008, 163 : 93 - 124
  • [24] Homotopy theory of diagrams
    Chachólski, WC
    Scherer, J
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 155 (736) : 1 - +
  • [25] HOMOTOPY MODEL THEORY
    Halimi, Brice
    JOURNAL OF SYMBOLIC LOGIC, 2021, 86 (04) : 1301 - 1323
  • [26] Motivic Homotopy Theory
    Marc Levine
    Milan Journal of Mathematics, 2008, 76 : 165 - 199
  • [27] A Categorical Theory of Patches
    Mimram, Samuel
    Di Giusto, Cinzia
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2013, 298 : 283 - 307
  • [28] On a Categorical Theory for Emergence
    La Guardia, Giuliano G.
    Miranda, Pedro Jeferson
    AXIOMATHES, 2022, 32 (SUPPL 3): : 1059 - 1103
  • [29] On a Categorical Theory for Emergence
    Giuliano G. La Guardia
    Pedro Jeferson Miranda
    Axiomathes, 2022, 32 : 1059 - 1103
  • [30] THE HOMOTOPY THEORY OF COINCIDENCES
    FULLER, FB
    ANNALS OF MATHEMATICS, 1954, 59 (02) : 219 - 226