The geometry of generalized Steinberg varieties

被引:6
|
作者
Douglass, JM
Röhrle, G
机构
[1] Univ Birmingham, Sch Math & Stat, Birmingham B15 2TT, W Midlands, England
[2] Univ N Texas, Dept Math, Denton, TX 76203 USA
关键词
Steinberg variety; Springer representations;
D O I
10.1016/j.aim.2003.09.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a reductive, algebraic group, G, the Steinberg variety of G is the set of all triples consisting of a unipotent element, u, in G and two Borel subgroups of G that contain u. We define generalized Steinberg varieties that depend on four parameters and analyze in detail two special cases that turn out to be related to distinguished double coset representatives in the Weyl group. Using one of the two special cases, we define a parabolic version of a map from the Weyl group to a set of nilpotent orbits of G in Lie(G) defined by Joseph and study some of its properties. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:396 / 416
页数:21
相关论文
共 50 条
  • [41] POLAR VARIETIES AND INTEGRAL GEOMETRY
    LANGEVIN, R
    SHIFRIN, T
    AMERICAN JOURNAL OF MATHEMATICS, 1982, 104 (03) : 553 - 605
  • [42] Secant varieties and birational geometry
    Peter Vermeire
    Mathematische Zeitschrift, 2002, 242 : 75 - 95
  • [43] Systolic geometry of Bieberback varieties
    El Mir, Chady
    Lafontaine, Jacques
    GEOMETRIAE DEDICATA, 2008, 136 (01) : 95 - 110
  • [44] Positroid varieties: juggling and geometry
    Knutson, Allen
    Lam, Thomas
    Speyer, David E.
    COMPOSITIO MATHEMATICA, 2013, 149 (10) : 1710 - 1752
  • [45] Secant varieties and birational geometry
    Vermeire, P
    MATHEMATISCHE ZEITSCHRIFT, 2002, 242 (01) : 75 - 95
  • [46] GEOMETRY OF REGULAR HESSENBERG VARIETIES
    HIRAKU ABE
    NAOKI FUJITA
    HAOZHI ZENG
    Transformation Groups, 2020, 25 : 305 - 333
  • [47] Rigid geometry on projective varieties
    McKay, Benjamin
    MATHEMATISCHE ZEITSCHRIFT, 2012, 272 (3-4) : 761 - 791
  • [48] Rigid geometry on projective varieties
    Benjamin McKay
    Mathematische Zeitschrift, 2012, 272 : 761 - 791
  • [49] The geometry of toric hyperkahler varieties
    Konno, Hiroshi
    TORIC TOPOLOGY, 2008, 460 : 241 - 260
  • [50] Diophantine geometry and toric varieties
    Philippon, P
    Sombra, M
    COMPTES RENDUS MATHEMATIQUE, 2005, 340 (07) : 507 - 512