Global stability of the SEIR epidemic model with infectivityin both latent period and infected period

被引:0
|
作者
Zhang, Yu [1 ]
Ren, Ze-Zhu [2 ]
机构
[1] Harbin Univ Commerce, Coll Fdn Sci, Harbin, Peoples R China
[2] Harbin Univ Commerce, Coll Econ, Harbin, Peoples R China
关键词
epidemic model; latent period; equilibrium; the second compound matrix; global stability;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
An epidemic model with infectivity and recovery in both latent and infected period is introduced. Utilizing the LaSalle invariance principle and Bendixson criterion, the basic reproduction number is found, we prove that the disease-free equilibrium is globally asymptotically stable when the basic reproduction number is less than one. The disease-free equilibrium is unstable and the unique positive equilibrium is globally asymptotically stable when the basic reproduction number is greater than one. Numerical simulations support our conclusions.
引用
收藏
页码:34 / 38
页数:5
相关论文
共 50 条
  • [41] Global stability of an SEIR epidemic model with vertical transmission and saturating contact rate
    Li, Xue-Zhi
    Zhou, Lin-Lin
    CHAOS SOLITONS & FRACTALS, 2009, 40 (02) : 874 - 884
  • [42] Global dynamics of heterogeneous epidemic models with exponential and nonexponential latent period distributions
    Zang, Huiping
    Lin, Yi
    Liu, Shengqiang
    STUDIES IN APPLIED MATHEMATICS, 2024, 152 (04) : 1365 - 1403
  • [43] CRITICAL WAVES OF A STAGE-STRUCTURED EPIDEMIC MODEL WITH LATENT PERIOD
    Huang, Wenzhang
    Wu, Chufen
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 153 (02) : 565 - 575
  • [44] Dynamical behaviors of an SIRI epidemic model with nonlinear incidence and latent period
    Guo, Peng
    Yang, Xinsong
    Yang, Zhichun
    ADVANCES IN DIFFERENCE EQUATIONS, 2014,
  • [45] A tractable deterministic model with realistic latent period for an epidemic in a linear habitat
    M. O'Callaghan
    A. G. Murray
    Journal of Mathematical Biology, 2002, 44 : 227 - 251
  • [46] Traveling waves in the Kermack-McKendrick epidemic model with latent period
    He, Junfeng
    Tsai, Je-Chiang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (01):
  • [47] A periodic SEIRS epidemic model with a time-dependent latent period
    Fuxiang Li
    Xiao-Qiang Zhao
    Journal of Mathematical Biology, 2019, 78 : 1553 - 1579
  • [48] A tractable deterministic model with realistic latent period for an epidemic in a linear habitat
    O'Callaghan, M
    Murray, AG
    JOURNAL OF MATHEMATICAL BIOLOGY, 2002, 44 (03) : 227 - 251
  • [49] Dynamical behaviors of an SIRI epidemic model with nonlinear incidence and latent period
    Peng Guo
    Xinsong Yang
    Zhichun Yang
    Advances in Difference Equations, 2014
  • [50] A periodic SEIRS epidemic model with a time-dependent latent period
    Li, Fuxiang
    Zhao, Xiao-Qiang
    JOURNAL OF MATHEMATICAL BIOLOGY, 2019, 78 (05) : 1553 - 1579