The Limit Behaviour of Imprecise Continuous-Time Markov Chains

被引:16
|
作者
De Bock, Jasper [1 ]
机构
[1] Univ Ghent, Data Sci Lab, Technol Pk 914, B-9052 Zwijnaarde, Belgium
基金
比利时弗兰德研究基金会;
关键词
Markov chain; Continuous time; Imprecise; Convergence; Limiting distribution; Ergodicity; Matrix exponential; Lower transition operator; Lower transition rate operator;
D O I
10.1007/s00332-016-9328-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the limit behaviour of a nonlinear differential equation whose solution is a superadditive generalisation of a stochastic matrix, prove convergence, and provide necessary and sufficient conditions for ergodicity. In the linear case, the solution of our differential equation is equal to the matrix exponential of an intensity matrix and can then be interpreted as the transition operator of a homogeneous continuous-time Markov chain. Similarly, in the generalised nonlinear case that we consider, the solution can be interpreted as the lower transition operator of a specific set of non-homogeneous continuous-time Markov chains, called an imprecise continuous-time Markov chain. In this context, our convergence result shows that for a fixed initial state, an imprecise continuous-time Markov chain always converges to a limiting distribution, and our ergodicity result provides a necessary and sufficient condition for this limiting distribution to be independent of the initial state.
引用
收藏
页码:159 / 196
页数:38
相关论文
共 50 条
  • [21] Matrix Analysis for Continuous-Time Markov Chains
    Le, Hung, V
    Tsatsomeros, M. J.
    SPECIAL MATRICES, 2021, 10 (01): : 219 - 233
  • [22] Algorithmic Randomness in Continuous-Time Markov Chains
    Huang, Xiang
    Lutz, Jack H.
    Migunov, Andrei N.
    2019 57TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2019, : 615 - 622
  • [23] Path integrals for continuous-time Markov chains
    Pollett, PK
    Stefanov, VT
    JOURNAL OF APPLIED PROBABILITY, 2002, 39 (04) : 901 - 904
  • [24] Ergodic degrees for continuous-time Markov chains
    MAO YonghuaDepartment of Mathematics Beijing Normal University Beijing China
    ScienceinChina,SerA., 2004, Ser.A.2004 (02) : 161 - 174
  • [25] Maxentropic continuous-time homogeneous Markov chains☆
    Bolzern, Paolo
    Colaneri, Patrizio
    De Nicolao, Giuseppe
    AUTOMATICA, 2025, 175
  • [26] Ergodic degrees for continuous-time Markov chains
    Yonghua Mao
    Science in China Series A: Mathematics, 2004, 47 : 161 - 174
  • [27] On perturbation bounds for continuous-time Markov chains
    Zeifman, A. I.
    Korolev, V. Yu.
    STATISTICS & PROBABILITY LETTERS, 2014, 88 : 66 - 72
  • [28] Subgeometric ergodicity for continuous-time Markov chains
    Liu, Yuanyuan
    Zhang, Hanjun
    Zhao, Yiqiang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 368 (01) : 178 - 189
  • [29] Quantitative Programming and Continuous-Time Markov Chains
    Todoran, Eneia Nicolae
    2023 25TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING, SYNASC 2023, 2023, : 104 - 113
  • [30] Perturbation analysis for continuous-time Markov chains
    Liu YuanYuan
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (12) : 2633 - 2642