Diagnosis of Anomaly in the Dynamic State Estimator of a Power System using System Decomposition

被引:0
|
作者
Ghosal, Malini [1 ]
机构
[1] Texas Tech Univ, Elect & Comp Engn, Lubbock, TX 79409 USA
基金
美国国家科学基金会;
关键词
TOPOLOGY ERROR; IDENTIFICATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In a state estimator, the presence of malicious or simply corrupt sensor data or bad data is detected by the high value of normalized measurement residuals that exceeds the threshold value, determined by the chi(2) distribution. However, high normalized residuals can also be caused by another type of anomaly, namely gross modeling or topology error. In this paper we propose a method to distinguish between these two sources of anomalies - 1) malicious sensor data and 2) modeling error. The anomaly detector will start with assuming a case of malicious data and suspect some of the individual measurements corresponding to the highest normalized residuals to be 'malicious', unless proved otherwise. Then, choosing a change of basis, the state space is transformed and decomposed into 'observable' and 'unobservable' parts with respect to these 'suspicious' measurements. We argue that, while the anomaly due to malicious data can only affect the 'observable' part of the states, there exists no such restriction for anomalies due to modeling error. Numerical results illustrate how the proposed anomaly diagnosis based on Kalman decomposition can successfully distinguish between the two types of anomalies.
引用
收藏
页码:2476 / 2481
页数:6
相关论文
共 50 条
  • [41] Inclusion of PMU current phasor measurements in a power system state estimator
    Chakrabarti, S.
    Kyriakides, E.
    Ledwich, G.
    Ghosh, A.
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2010, 4 (10) : 1104 - 1115
  • [42] POWER SYSTEM TRACKING AND DYNAMIC STATE ESTIMATION
    Jain, Amit
    Shivakumar, N. R.
    2009 IEEE/PES POWER SYSTEMS CONFERENCE AND EXPOSITION, VOLS 1-3, 2009, : 277 - +
  • [43] Power System Distributed Dynamic State Prediction
    Rahman, Md Ashfaqur
    Venayagamoorthy, Ganesh Kumar
    PROCEEDINGS OF 2016 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2016,
  • [44] Dynamic state estimation of an electric power system
    Ortiz, Gabriel A.
    Graciela Colome, D.
    2017 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE - LATIN AMERICA (ISGT LATIN AMERICA), 2017,
  • [45] A Distributed Power System State Estimator Incorporating Linear and Nonlinear Areas
    Guo, Y.
    Wu, W. C.
    Wang, Z. J.
    Zhang, B. M.
    Sun, H. B.
    2014 IEEE PES GENERAL MEETING - CONFERENCE & EXPOSITION, 2014,
  • [46] A Hybrid Power System State Estimator Under Limited PMU Availability
    Darmis, Orestis A.
    Korres, George N.
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2024, 39 (06) : 7166 - 7177
  • [47] Power system reliability using network decomposition
    Abdelaziz, AR
    ELECTRIC MACHINES AND POWER SYSTEMS, 1997, 25 (04): : 411 - 417
  • [48] Dynamic State Estimation for Power System Control and Protection IEEE Task Force on Power System Dynamic State and Parameter Estimation
    Liu, Yu
    Singh, Abhinav Kumar
    Zhao, Junbo
    Meliopoulos, A. P. Sakis
    Pal, Bikash
    Ariff, Mohd Aifaa bin Mohd
    Van Cutsem, Thierry
    Glavic, Mevludin
    Huang, Zhenyu
    Kamwa, Innocent
    Mili, Lamine
    Mir, Abdul Saleem
    Taha, Ahmad
    Terzija, Vladimir
    Yu, Shenglong
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2021, 36 (06) : 5909 - 5921
  • [49] Performance Study of Power System Stabilizer of the form of State Feedback Control with State Estimator
    Das Mahapatra, Mou
    Dey, Jayati
    Ghosh, Saradindu
    2015 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2015, : 1375 - 1380
  • [50] A New Method for Power System Load Modeling Using a Nonlinear System Identification Estimator
    Jahromi, Mohsen Ghaffarpour
    Mitchell, Steven. D.
    Mirzaeva, Galina
    Gay, David
    2015 51ST IEEE INDUSTRY APPLICATIONS SOCIETY ANNUAL MEETING, 2015,