Parameters affecting the behaviour of RC beams strengthened in shear and flexure with various FRP systems

被引:23
|
作者
Sengun, Kadir [1 ]
Arslan, Guray [1 ]
机构
[1] Yildiz Tech Univ, Dept Civil Engn, Istanbul, Turkey
关键词
Carbon fiber reinforced polymer (CFRP); Reinforced concrete; Beams; Glass fiber reinforced polymer (GFRP); Shear strength; Strengthening; REINFORCED-CONCRETE BEAMS; TRANSVERSE STEEL; T-BEAMS; CFRP; CAPACITY; POLYMER; PERFORMANCE; DESIGN; STRIPS; SHEETS;
D O I
10.1016/j.istruc.2022.04.024
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
An experimental investigation was carried out on rectangular RC beams strengthened with FRP in different strengthening forms in shear and flexure. The parameters examined in this study are as follows: The shear span to effective depth ratio (a/d), the number of FRP layers in shear, strengthening form (completely wrapping, U-wrapping, and side-bonding), FRP types (Glass or Carbon), and FRP strips width to spacing ratios (w(f)/s(f)). The experimental results showed that strengthening with FRP enhanced the load-carrying capacity, deflection capacity, initial stiffness, and ductility capacity with respect to the reference beams. Increasing the number of FRP layers in shear did not provide a proportional increase in the contribution of FRP to shear strength. The FRP types, FRP strips width to spacing ratios (w(f)/s(f)), the number of FRP layers in shear, a/d, and strengthening form affect the cracking patterns and loads of tested beams compared to reference beams. In addition, strengthening with FRP could change the failure modes of RC beams from brittle shear failure to more ductile flexural failure. It was also found that the equations used to calculate FRP contribution to shear strength (ACI 440.2R (2017), Fib-TG 9.3 (2001), Khalifa (2002), Triantafillou (1998), Bukhari (2010)) overestimated the FRP contribution and gave unconservative results, especially for U-wrapped and side bonded beams compared to the experimental results.
引用
收藏
页码:202 / 212
页数:11
相关论文
共 50 条
  • [21] Ultimate Shear of RC Beams with Corroded Stirrups and Strengthened with FRP
    Spinella, Nino
    Colajanni, Piero
    Recupero, Antonino
    Tondolo, Francesco
    BUILDINGS, 2019, 9 (02)
  • [22] Experimental response of RC beams strengthened in shear by FRP sheets
    Grande, E.
    Imbimbo, M.
    Rasulo, A.
    Open Civil Engineering Journal, 2013, 7 (01): : 126 - 134
  • [23] Interfacial shear stress in FRP-strengthened RC beams
    Liu X.-X.
    Xu R.-Q.
    Gongcheng Lixue/Engineering Mechanics, 2019, 36 : 149 - 153
  • [24] Interfacial Shear Stresses Calculation of FRP Strengthened RC Beams
    Yang, Jia
    PROCEEDINGS OF THE 2017 6TH INTERNATIONAL CONFERENCE ON ENERGY, ENVIRONMENT AND SUSTAINABLE DEVELOPMENT (ICEESD 2017), 2017, 129 : 92 - 95
  • [25] On the strength of RC beams shear strengthened with prestressed FRP straps
    Chen, JF
    Teng, JG
    FRP COMPOSITES IN CIVIL ENGINEERING, VOLS I AND II, PROCEEDINGS, 2001, : 695 - 704
  • [26] Shear Resisting Mechanisms of ECC FRP Strengthened RC Beams
    Chen, Cheng
    Liang, Tiehua
    Zhou, Yingwu
    Cheng, Lijuan
    Zhang, Liwen
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2024, 28 (05)
  • [27] Debonding in RC beams shear strengthened with complete FRP wraps
    Cao, SY
    Chen, JF
    Teng, JG
    Hao, Z
    Chen, J
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2005, 9 (05) : 417 - 428
  • [28] RC beams shear-strengthened with FRP: Stress distributions in the FRP reinforcement
    Lu, X. Z.
    Chen, J. F.
    Ye, L. P.
    Teng, J. G.
    Rotter, J. M.
    CONSTRUCTION AND BUILDING MATERIALS, 2009, 23 (04) : 1544 - 1554
  • [29] Shear Behaviour of RC Beams Strengthened by Various Ultrahigh Performance Fibre-Reinforced Concrete Systems
    Mansour, Walid
    Tayeh, Bassam A.
    ADVANCES IN CIVIL ENGINEERING, 2020, 2020
  • [30] Finite Element Modeling of RC Beams Strengthened in Flexure Using FRP Material
    Affifa Akram
    Rashid Hameed
    Zahid Ahmad Siddiqi
    M. Rizwan Riaz
    Muhammad Ilyas
    Arabian Journal for Science and Engineering, 2014, 39 : 8573 - 8584