Bloch functions on bounded symmetric domains

被引:31
|
作者
Chu, Cho-Ho [1 ]
Hamada, Hidetaka [2 ]
Honda, Tatsuhiro [3 ]
Kohr, Gabriela [4 ]
机构
[1] Queen Mary Univ London, London E1 4NS, England
[2] Kyushu Sangyo Univ, Fac Engn, Higashi Ku, 3-1 Matsukadai 2 Chome, Fukuoka 8138503, Japan
[3] Hiroshima Inst Technol, Hiroshima 7315193, Japan
[4] Univ Babes Bolyai, Fac Math & Comp Sci, 1 M Kogalniceanu Str, Cluj Napoca 400084, Romania
关键词
Bloch function; Bounded symmetric domain; Composition operator; JB*-triple; WEIGHTED COMPOSITION OPERATORS; LINEARLY INVARIANT FAMILIES; COMPLEX BANACH-SPACES; UNIT BALL; DISTORTION-THEOREMS; HILBERT-SPACE; C-N; MAPPINGS; VARIABLES; TRIPLE;
D O I
10.1016/j.jfa.2016.11.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce and characterize Bloch functions on bounded symmetric domains, which may be infinite dimensional, by extending several well-known equivalent conditions for Bloch functions on the open unit disc U in C. We also generalize a number of results concerning Bloch functions on U to bounded symmetric domains. Given a holomorphic mapping phi between bounded symmetric domains Beta x and Beta y, we derive criteria for boundedness and compactness of the composition operator C-phi between the Bloch spaces beta(Beta(Upsilon)) and beta(Beta(Chi)), extending several known results for finite dimensional domains. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:2412 / 2441
页数:30
相关论文
共 50 条