Semiparametric regression based on quadratic inference function for multivariate failure time data with auxiliary information

被引:1
|
作者
Yan, Feifei [1 ,4 ]
Zhu, Lin [4 ]
Liu, Yanyan [2 ]
Cai, Jianwen [3 ]
Zhou, Haibo [3 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
[3] Univ N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA
[4] East China Univ Technol, Sch Sci, Nanchang 330013, Jiangxi, Peoples R China
基金
美国国家科学基金会;
关键词
Multivariate failure time data; Validation sample; Quadratic inference function; Chi-squared test; MARGINAL HAZARDS MODEL; ESTIMATING EQUATIONS; SURVIVAL;
D O I
10.1007/s10985-020-09513-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with statistical inference procedure of multivariate failure time data when the primary covariate can be measured only on a subset of the full cohort but the auxiliary information is available. To improve efficiency of statistical inference, we use quadratic inference function approach to incorporate the intra-cluster correlation and use kernel smoothing technique to further utilize the auxiliary information. The proposed method is shown to be more efficient than those ignoring the intra-cluster correlation and auxiliary information and is easy to implement. In addition, we develop a chi-squared test for hypothesis testing of hazard ratio parameters. We evaluate the finite-sample performance of the proposed procedure via extensive simulation studies. The proposed approach is illustrated by analysis of a real data set from the study of left ventricular dysfunction.
引用
收藏
页码:269 / 299
页数:31
相关论文
共 50 条
  • [31] Multivariate logistic regression with incomplete covariate and auxiliary information
    Sinha, Sanjoy K.
    Laird, Nan M.
    Fitzmaurice, Garrett M.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (10) : 2389 - 2397
  • [32] Regression Estimation Using Multivariate Failure Time Data and a Common Baseline Hazard Function Model
    Cai J.
    Prentice R.L.
    Lifetime Data Analysis, 1997, 3 (3) : 197 - 213
  • [33] An Extension of the Quadratic Error Function for Learning Imprecise Data in Multivariate Nonlinear Regression
    Hounmenou, Castro Gbememali
    Gneyou, Kossi Essona
    Glele Kakai, Romain
    JOURNAL OF PROBABILITY AND STATISTICS, 2020, 2020
  • [34] Semiparametric inference with correlated recurrence time data
    Adekpedjou, Akim
    Quiton, Jonathan
    Wen, Xuerong Meggie
    STATISTICAL METHODOLOGY, 2013, 10 (01) : 1 - 13
  • [35] Quantile regression for panel count data based on quadratic inference functions
    Wang, Weiwei
    Wu, Xianyi
    Zhao, Xiaobing
    Zhou, Xian
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2020, 207 : 230 - 245
  • [36] Marginal hazard regression for correlated failure time data with auxiliary covariates
    Yanyan Liu
    Zhongshang Yuan
    Jianwen Cai
    Haibo Zhou
    Lifetime Data Analysis, 2012, 18 : 116 - 138
  • [37] Marginal hazard regression for correlated failure time data with auxiliary covariates
    Liu, Yanyan
    Yuan, Zhongshang
    Cai, Jianwen
    Zhou, Haibo
    LIFETIME DATA ANALYSIS, 2012, 18 (01) : 116 - 138
  • [38] Rank regression analysis of multivariate failure time data based on marginal linear models
    Jin, Z
    Lin, DY
    Ying, Z
    SCANDINAVIAN JOURNAL OF STATISTICS, 2006, 33 (01) : 1 - 23
  • [39] A SEMIPARAMETRIC INFERENCE TO REGRESSION ANALYSIS WITH MISSING COVARIATES IN SURVEY DATA
    Yang, Shu
    Kim, Jae Kwang
    STATISTICA SINICA, 2017, 27 (01) : 261 - 285
  • [40] Variable selection in semiparametric hazard regression for multivariate survival data
    Liu, Jicai
    Zhang, Riquan
    Zhao, Weihua
    Lv, Yazhao
    JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 142 : 26 - 40