A PROJECTED SUBGRADIENT-PROXIMAL METHOD FOR SPLIT EQUALITY EQUILIBRIUM PROBLEMS OF PSEUDOMONOTONE BIFUNCTIONS IN BANACH

被引:7
|
作者
Ogbuisi, Ferdinard U. [1 ,2 ]
Shehu, Yekini [2 ]
机构
[1] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Durban, South Africa
[2] Univ Nigeria, Dept Math, Nsukka, Nigeria
来源
基金
新加坡国家研究基金会;
关键词
Projected subgradient-proximal method; Pseudomonotone bifunctions; Split equality equilibrium problem; 2-uniformly convex Banach space; Uniformly smooth Banach space; FIXED-POINT PROBLEMS; RELATIVELY NONEXPANSIVE-MAPPINGS; GENERALIZED MIXED EQUILIBRIUM; STRONG-CONVERGENCE THEOREM; FEASIBILITY PROBLEMS; APPROXIMATION; INEQUALITIES; SPACES;
D O I
10.23952/jnva.3.2019.2.09
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a simultaneous projected subgradient-proximal type iterative algorithm to solve a split equality equilibrium problem with pseudomonotone bifunctions in 2-uniformly convex and uniformly smooth Banach spaces. We obtain convergence results under some mild conditions on the bifunctions. Furthermore, we also give applications to the domain decomposition for PDEs.
引用
收藏
页码:205 / 224
页数:20
相关论文
共 50 条