A note on powers of Pisot numbers

被引:0
|
作者
Dubickas, A [1 ]
机构
[1] Vilnius State Univ, Dept Math, LT-2006 Vilnius, Lithuania
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2000年 / 56卷 / 1-2期
关键词
algebraic numbers; Pisot numbers; fractional part;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let b be an algebraic number greater than one such that the fractional part of its powers tends to zero or one. We show that in the first case b is an integer and in the second case b is a certain type of Pisot number.
引用
收藏
页码:141 / 144
页数:4
相关论文
共 50 条
  • [41] Salem numbers as Mahler measures of Gaussian Pisot numbers
    Zaimi, Toufik
    ACTA ARITHMETICA, 2020, 194 (04) : 383 - 392
  • [42] Salem numbers, Pisot numbers, Mahler measure, and graphs
    McKee, J
    Smyth, C
    EXPERIMENTAL MATHEMATICS, 2005, 14 (02) : 211 - 229
  • [43] Periodic Intermediate β-Expansions of Pisot Numbers
    Quackenbush, Blaine
    Samuel, Tony
    West, Matt
    MATHEMATICS, 2020, 8 (06)
  • [44] Some results on Pisot and Salem numbers
    Bertin, MJ
    NUMBER THEORY IN PROGRESS, VOLS 1 AND 2: VOL 1: DIOPHANTINE PROBLEMS AND POLYNOMIALS; VOL 2: ELEMENTARY AND ANALYTIC NUMBER THEORY;, 1999, : 1 - 9
  • [45] On the spectra of Pisot-cyclotomic numbers
    Kevin G. Hare
    Zuzana Masáková
    Tomáš Vávra
    Letters in Mathematical Physics, 2018, 108 : 1729 - 1756
  • [46] Computable absolutely Pisot normal numbers
    Madritsch, Manfred G.
    Scheerer, Adrian-Maria
    Tichy, Robert F.
    ACTA ARITHMETICA, 2018, 184 (01) : 7 - 29
  • [48] Complex Pisot numbers of small modulus
    Garth, D
    COMPTES RENDUS MATHEMATIQUE, 2003, 336 (12) : 967 - 970
  • [49] PISOT AND SALEM K-NUMBERS
    BERTIN, MJ
    ACTA ARITHMETICA, 1994, 68 (02) : 113 - 131
  • [50] There are only eleven special Pisot numbers
    Smyth, CJ
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1999, 31 : 1 - 5