A numerical study on the N-periodic wave solutions of two coupled bilinear equations

被引:7
|
作者
Wang, Xue-Xia [1 ]
Sun, Jian-Qing [1 ]
Zhang, Ying-Nan [2 ]
机构
[1] Ocean Univ China, Sch Math Sci, Qingdao, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
Tzitzeica equation; (2+1)-Dimensional modified Bogoyavlenskii-Schiff equation; N-Periodic wave solution; Riemann’ s � � -function; EVOLUTION-EQUATIONS; THETA-FUNCTIONS; KDV; TZITZEICA; REPRESENTATION; SOLITONS;
D O I
10.1007/s11075-020-01054-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, based on the direct method proposed by Akira Nakamura, we present an efficient numerical scheme to calculate the N-periodic wave solutions to the Tzitzeica equation and the (2 + 1)-dimensional modified Bogoyavlenskii-Schiff (mBS) equation which can be transformed into a coupled bilinear system with some dependent variable transformation. By using this numerical scheme, we calculate their 2-periodic wave solutions and 3-periodic wave solutions as examples. We also show the asymptotic behaviors under a "small amplitude" limit of these quasi-periodic wave solutions numerically.
引用
收藏
页码:711 / 728
页数:18
相关论文
共 50 条