A numerical study on the N-periodic wave solutions of two coupled bilinear equations

被引:7
|
作者
Wang, Xue-Xia [1 ]
Sun, Jian-Qing [1 ]
Zhang, Ying-Nan [2 ]
机构
[1] Ocean Univ China, Sch Math Sci, Qingdao, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
Tzitzeica equation; (2+1)-Dimensional modified Bogoyavlenskii-Schiff equation; N-Periodic wave solution; Riemann’ s � � -function; EVOLUTION-EQUATIONS; THETA-FUNCTIONS; KDV; TZITZEICA; REPRESENTATION; SOLITONS;
D O I
10.1007/s11075-020-01054-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, based on the direct method proposed by Akira Nakamura, we present an efficient numerical scheme to calculate the N-periodic wave solutions to the Tzitzeica equation and the (2 + 1)-dimensional modified Bogoyavlenskii-Schiff (mBS) equation which can be transformed into a coupled bilinear system with some dependent variable transformation. By using this numerical scheme, we calculate their 2-periodic wave solutions and 3-periodic wave solutions as examples. We also show the asymptotic behaviors under a "small amplitude" limit of these quasi-periodic wave solutions numerically.
引用
收藏
页码:711 / 728
页数:18
相关论文
共 50 条
  • [1] A numerical study on the N-periodic wave solutions of two coupled bilinear equations
    Xue-Xia Wang
    Jian-Qing Sun
    Ying-Nan Zhang
    Numerical Algorithms, 2021, 88 : 711 - 728
  • [2] A numerical study of N-periodic wave solutions to four integrable equations
    Liang, Zhuo-Yao
    Sun, Jian-Qing
    Yu, Guo-Fu
    Zhong, Yi-Ning
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 116
  • [3] Numerical calculation of N-periodic wave solutions to coupled KdV-Toda-type equations
    Zhang, Yingnan
    Hu, Xingbiao
    Sun, Jianqing
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 477 (2245):
  • [4] Numerical calculation of N-periodic wave solutions to two kinds of generalized (2+1)-dimensional KdV-type equations
    Xin, Pengcheng
    Zhao, Zhonglong
    Wang, Yu
    Guo, Zun-Guang
    PHYSICA SCRIPTA, 2025, 100 (01)
  • [5] Numerical calculation of N-periodic wave solutions of the negative-order Korteweg-de Vries equations
    Wang, Yu
    Zhao, Zhonglong
    Zhang, Yufeng
    EPL, 2024, 146 (03)
  • [6] N-periodic wave solutions of the N=2 supersymmetric KdV equation
    Li, Zhaohua
    Zhao, Zhonglong
    APPLIED MATHEMATICS LETTERS, 2025, 160
  • [7] An N-periodic control for coupled systems
    Coll, Carmen
    Sanchez, Elena
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2018, 49 (05) : 1040 - 1046
  • [8] N-periodic wave solutions of the (2+1)-dimensional integrable nonlocal nonlinear Schrödinger equations
    Zhao, Zhonglong
    Wang, Yu
    WAVE MOTION, 2025, 136
  • [9] Bilinear approach to soliton and periodic wave solutions of two nonlinear evolution equations of Mathematical Physics
    Cao, Rui
    Zhao, Qiulan
    Gao, Lin
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
  • [10] The N-periodic wave solutions to the N=1 supersymmetric Sawada–Kotera–Ramani equation
    辛鹏程
    赵忠龙
    王宇
    Chinese Physics B, 2025, 34 (02) : 210 - 217