A 'non-stopping' time with the optional-stopping property

被引:10
|
作者
Williams, D [1 ]
机构
[1] Univ Coll Swansea, Dept Math, Swansea SA2 8PP, W Glam, Wales
关键词
D O I
10.1112/S0024609302001303
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An example is given of a random time rho associated with Brownian motion such that rho is not a stopping time but EMrho = EMo for every uniformly integrable martingale M.
引用
收藏
页码:610 / 612
页数:3
相关论文
共 50 条
  • [21] CHOICE BEHAVIOR IN AN OPTIONAL STOPPING TASK
    RAPOPORT, A
    TVERSKY, A
    ORGANIZATIONAL BEHAVIOR AND HUMAN PERFORMANCE, 1970, 5 (02): : 105 - 120
  • [22] RANDOMIZED STOPPING-TIMES - DOOB OPTIONAL SAMPLING THEOREM AND OPTIMAL STOPPING
    BUCKDAHN, R
    ENGELBERT, HJ
    MATHEMATISCHE NACHRICHTEN, 1984, 115 : 237 - 247
  • [23] Research on Non-stopping Toll System for Highway Based on the Modern Internet Payment Technology
    Rong, Fengyi
    Chen, Xiaoxu
    Li, Canran
    Shen, Yaning
    Wang, Peirui
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON ELECTROMECHANICAL CONTROL TECHNOLOGY AND TRANSPORTATION, 2015, 41 : 319 - 323
  • [24] On the Existence of Static Equilibria of a Cable-Suspended Load with Non-stopping Flying Carriers
    Gabellieri, Chiara
    Franchi, Antonio
    2024 INTERNATIONAL CONFERENCE ON UNMANNED AIRCRAFT SYSTEMS, ICUAS, 2024, : 638 - 644
  • [25] Identification of non-stopping ions with Z>65 in polycarbonate track detector stacks
    Domingo, C
    Font, L
    Fernández, F
    Baixeras, C
    RADIATION MEASUREMENTS, 2003, 36 (1-6) : 281 - 285
  • [27] INFORMATION SEEKING - OPTIONAL VERSUS FIXED STOPPING
    FRIED, LS
    PETERSON, CR
    JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 1969, 80 (3P1): : 525 - &
  • [28] Why optional stopping can be a problem for Bayesians
    de Heide, Rianne
    Grunwald, Peter D.
    PSYCHONOMIC BULLETIN & REVIEW, 2021, 28 (03) : 795 - 812
  • [29] A LIMIT THEOREM AND BOUNDS FOR AN OPTIONAL STOPPING PROBABILITY
    SKIBINSKY, M
    BIOMETRICS, 1957, 13 (03) : 421 - 421
  • [30] Why optional stopping can be a problem for Bayesians
    Rianne de Heide
    Peter D. Grünwald
    Psychonomic Bulletin & Review, 2021, 28 : 795 - 812