On Finsler spaces of Douglas type - A generalization of the notion of Berwald space

被引:0
|
作者
Bacso, S [1 ]
Matsumoto, M [1 ]
机构
[1] LAJOS KOSSUTH UNIV,INST MATH & INFORMAT,H-4010 DEBRECEN,HUNGARY
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 1997年 / 51卷 / 3-4期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A new generalization of the notion of Berwald space is proposed from the viewpoint of the equation of geodesics. A Douglas space is characterized by the vanishing Douglas tenser. Various examples of Douglas spaces are given in relation to other special Finsler spaces.
引用
收藏
页码:385 / 406
页数:22
相关论文
共 50 条
  • [1] On Finsler spaces of Douglas type III
    Bácsó, S
    Matsumoto, M
    [J]. FINSLERIAN GEOMETRIES: A MEETING OF MINDS, 2000, 109 : 89 - 94
  • [2] On Finsler surfaces that are both Douglas and generalized Berwald
    Bartelmess, Nina
    Lang, Julius
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2020, 97 (3-4): : 381 - 391
  • [3] Maximally movable spaces of Finsler type and their generalization
    Panzhensky V.I.
    Sukhova O.V.
    [J]. Journal of Mathematical Sciences, 2011, 177 (4) : 589 - 596
  • [4] Conformally Berwald and conformally flat Finsler spaces
    Matsumoto, M
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2001, 58 (1-2): : 275 - 285
  • [5] On Finsler spaces of Douglas type II.: Projectively flat spaces
    Bácsó, S
    Matsumoto, M
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 1998, 53 (3-4): : 423 - 438
  • [6] On Finsler spaces of douglas type IV:: Projectively flat Kropina spaces
    Bácsó, S
    Matsumoto, M
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2000, 56 (1-2): : 213 - 221
  • [7] Reduction theorems of certain Douglas spaces to Berwald spaces
    Bácsó, S
    Matsumoto, M
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2003, 62 (3-4): : 315 - 324
  • [8] MINKOWSKIAN PRODUCT OF FINSLER-SPACES AND BERWALD CONNECTION
    OKADA, T
    [J]. JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1982, 22 (02): : 323 - 332
  • [9] Invariant volumes, weakly-Berwald Finsler spaces, and the Landsberg-Berwald problem
    Crampin, Mike
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2022, 100 (1-2): : 101 - 118
  • [10] INVARIANT ( α,β )- METRIC OF DOUGLAS AND BERWALD TYPE
    Kaur, Kirandeep
    Shanker, Gauree
    [J]. HONAM MATHEMATICAL JOURNAL, 2024, 46 (02): : 198 - 208