Invariant volumes, weakly-Berwald Finsler spaces, and the Landsberg-Berwald problem

被引:1
|
作者
Crampin, Mike [1 ]
机构
[1] Orchard Rising, Herrings Lane, Burnham Market, Norfolk, England
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2022年 / 100卷 / 1-2期
关键词
Finsler spaces; Berwald; weakly-Berwald; and Landsberg spaces; Ran-ders spaces; invariant volume forms; S-curvature;
D O I
10.5486/PMD.2022.9060
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
I discuss invariance of volume forms on a Finsler space. I show that a Finsler space which admits a vertically-invariant volume form which is invariant by the geodesic spray - a geodesically-invariant vertically-invariant volume form - is weakly Berwald, and deduce that a Landsberg space admits a geodesically-invariant verticallyinvariant volume form if and only if the space is a Berwald space. I illustrate the ideas by considering Randers spaces.
引用
收藏
页码:101 / 118
页数:18
相关论文
共 24 条
  • [1] ON LANDSBERG SPACES AND THE LANDSBERG-BERWALD PROBLEM
    Crampin, M.
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2011, 37 (04): : 1103 - 1124
  • [2] Weakly-Berwald spaces
    Bácsó, S
    Yoshikawa, R
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2002, 61 (1-2): : 219 - 231
  • [3] On complex Landsberg and Berwald spaces
    Aldea, Nicoleta
    Munteanu, Gheorghe
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (02) : 368 - 380
  • [4] ON A WEAKLY-BERWALD SPACE WITH SPECIAL EXPONENTIAL (α, β)-METRIC
    Tripathi, Brijesh Kumar
    Patel, Dhruvisha
    Pandey, T. N.
    [J]. JOURNAL OF RAJASTHAN ACADEMY OF PHYSICAL SCIENCES, 2023, 22 (1-2): : 97 - 113
  • [5] Reduction theorems of certain landsberg spaces to Berwald spaces
    Bacso, S
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 1996, 48 (3-4): : 357 - 366
  • [6] On the two dimensional Berwald-Landsberg problem
    Torrome, Ricardo Gallego
    [J]. XVIII INTERNATIONAL FALL WORKSHOP ON GEOMETRY AND PHYSICS, 2010, 1260 : 167 - 172
  • [7] Left invariant Finsler manifolds are generalized Berwald
    Aradi, Bernadett
    [J]. EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2015, 8 (01): : 118 - 125
  • [8] Conformally Berwald and conformally flat Finsler spaces
    Matsumoto, M
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2001, 58 (1-2): : 275 - 285
  • [9] A characterization of weakly Berwald spaces with (α, β)-metrics
    Wang, Kun
    Zhong, Chunping
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2022, 82
  • [10] MINKOWSKIAN PRODUCT OF FINSLER-SPACES AND BERWALD CONNECTION
    OKADA, T
    [J]. JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1982, 22 (02): : 323 - 332