Deflated and augmented Krylov subspace techniques

被引:0
|
作者
Chapman, A
Saad, Y
机构
[1] UNIV MINNESOTA,MINNESOTA SUPERCOMP INST,MINNEAPOLIS,MN 55455
[2] UNIV MINNESOTA,DEPT COMP SCI,MINNEAPOLIS,MN 55455
关键词
deflated GMRES; inner-iteration GMRES; block GMRES; augmented Krylov sub-space; flexible GMRES;
D O I
10.1002/(SICI)1099-1506(199701/02)4:1<43::AID-NLA99>3.0.CO;2-Z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a general framework for a number of techniques based on projection methods on 'augmented Krylov subspaces'. These methods include the deflated GMRES algorithm, an inner-outer FGMRES iteration algorithm, and the class of block Krylov methods. Augmented Krylov subspace methods often show a significant improvement in convergence rate when compared with their standard counterparts using the subspaces of the same dimension. The methods can all be implemented with a variant of the FGMRES algorithm. (C) 1997 by John Wiley & Sons, Ltd.
引用
收藏
页码:43 / 66
页数:24
相关论文
共 50 条
  • [41] A Krylov subspace method for information retrieval
    Blom, K
    Ruhe, A
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2004, 26 (02) : 566 - 582
  • [42] The Origin and Development of Krylov Subspace Methods
    Saad, Yousef
    COMPUTING IN SCIENCE & ENGINEERING, 2022, 24 (04) : 28 - 39
  • [43] Krylov subspace recycling for evolving structures
    Bolten, M.
    de Sturler, E.
    Hahn, C.
    Parks, M. L.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 391
  • [44] Krylov subspace methods in the electronic industry
    Heres, P
    Schilders, W
    PROGRESS IN INDUSTRIAL MATHEMATICS AT ECMI 2004, 2006, 8 : 139 - 143
  • [45] Krylov subspace methods in control: An overview
    Datta, BN
    PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 1997, : 3844 - 3848
  • [46] PIPELINED, FLEXIBLE KRYLOV SUBSPACE METHODS
    Sanan, P.
    Schnepp, S. M.
    May, D. A.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (05): : C441 - C470
  • [47] Spectral variants of Krylov subspace methods
    Molina, B
    Raydan, M
    NUMERICAL ALGORITHMS, 2002, 29 (1-3) : 197 - 208
  • [48] Preconditioners for Krylov subspace methods: An overview
    Pearson J.W.
    Pestana J.
    Pestana, Jennifer (jennifer.pestana@strath.ac.uk), 1600, Wiley-VCH Verlag (43):
  • [49] BIORTHOGONAL RATIONAL KRYLOV SUBSPACE METHODS
    Van Buggenhout, Niel
    Van Barel, Marc
    Vandebril, Raf
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2019, 51 : 451 - 468
  • [50] Krylov Subspace Methods in Dynamical Sampling
    Akram Aldroubi
    Ilya Krishtal
    Sampling Theory in Signal and Image Processing, 2016, 15 (1): : 9 - 20