Deflated and augmented Krylov subspace techniques

被引:0
|
作者
Chapman, A
Saad, Y
机构
[1] UNIV MINNESOTA,MINNESOTA SUPERCOMP INST,MINNEAPOLIS,MN 55455
[2] UNIV MINNESOTA,DEPT COMP SCI,MINNEAPOLIS,MN 55455
关键词
deflated GMRES; inner-iteration GMRES; block GMRES; augmented Krylov sub-space; flexible GMRES;
D O I
10.1002/(SICI)1099-1506(199701/02)4:1<43::AID-NLA99>3.0.CO;2-Z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a general framework for a number of techniques based on projection methods on 'augmented Krylov subspaces'. These methods include the deflated GMRES algorithm, an inner-outer FGMRES iteration algorithm, and the class of block Krylov methods. Augmented Krylov subspace methods often show a significant improvement in convergence rate when compared with their standard counterparts using the subspaces of the same dimension. The methods can all be implemented with a variant of the FGMRES algorithm. (C) 1997 by John Wiley & Sons, Ltd.
引用
收藏
页码:43 / 66
页数:24
相关论文
共 50 条
  • [1] A FRAMEWORK FOR DEFLATED AND AUGMENTED KRYLOV SUBSPACE METHODS
    Gaul, Andre
    Gutknecht, Martin H.
    Liesen, Joerg
    Nabben, Reinhard
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2013, 34 (02) : 495 - 518
  • [2] DEFLATED AND AUGMENTED KRYLOV SUBSPACE METHODS: A FRAMEWORK FOR DEFLATED BICG AND RELATED SOLVERS
    Gutknecht, Martin H.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2014, 35 (04) : 1444 - 1466
  • [3] Deflated and augmented global Krylov subspace methods for the matrix equations
    Ebadi, G.
    Alipour, N.
    Vuik, C.
    APPLIED NUMERICAL MATHEMATICS, 2016, 99 : 137 - 150
  • [4] Deflated and restarted Krylov subspace methods for Sylvester tensor equations
    Ying Gu
    Gang Wu
    Xin Zhang
    Calcolo, 2023, 60
  • [5] Deflated and restarted Krylov subspace methods for Sylvester tensor equations
    Gu, Ying
    Wu, Gang
    Zhang, Xin
    CALCOLO, 2023, 60 (03)
  • [6] Analysis of augmented Krylov subspace methods
    Saad, Y
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1997, 18 (02) : 435 - 449
  • [7] DEFLATED KRYLOV SUBSPACE METHODS FOR NEARLY SINGULAR LINEAR-SYSTEMS
    MEZA, JC
    SYMES, WW
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1992, 72 (03) : 441 - 457
  • [8] Deflated block Krylov subspace methods for large scale eigenvalue problems
    Niu, Qiang
    Lu, Linzhang
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (03) : 636 - 648
  • [9] A NOTE ON AUGMENTED UNPROJECTED KRYLOV SUBSPACE METHODS
    SOODHALTER, K. I. R. K. M.
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2022, 55 : 532 - 546
  • [10] Adaptive Detection Based on the Krylov Subspace Techniques
    Liu, Weijian
    Xie, Wenchong
    Wang, Yongliang
    PROCEEDINGS OF 2012 IEEE 11TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP) VOLS 1-3, 2012, : 1875 - +