Rough Set Analysis of Classification Data with Missing Values

被引:4
|
作者
Szelag, Marcin [1 ]
Blaszczynski, Jerzy [1 ]
Slowinski, Roman [1 ,2 ]
机构
[1] Poznan Univ Tech, Inst Comp Sci, PL-60965 Poznan, Poland
[2] Polish Acad Sci, Syst Res Inst, PL-01447 Warsaw, Poland
来源
ROUGH SETS | 2017年 / 10313卷
关键词
Rough set; Indiscernibility-based rough set approach; Dominance-based rough set approach; Missing values;
D O I
10.1007/978-3-319-60837-2_44
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we consider a rough set analysis of non-ordinal and ordinal classification data with missing attribute values. We show how this problem can be addressed by several variants of Indiscernibility-based Rough Set Approach (IRSA) and Dominance-based Rough Set Approach (DRSA). We propose some desirable properties that a rough set approach being able to handle missing attribute values should possess. Then, we analyze which of these properties are satisfied by the considered variants of IRSA and DRSA.
引用
收藏
页码:552 / 565
页数:14
相关论文
共 50 条
  • [21] Dynamic Ensemble of Rough Set Reducts for Data Classification
    Zhai, Jun-Hai
    Wang, Xi-Zhao
    Wang, Hua-Chao
    [J]. ROUGH SETS AND KNOWLEDGE TECHNOLOGY, RSKT 2014, 2014, 8818 : 642 - 649
  • [22] Uncertain Data Classification Using Rough Set Theory
    Suresh, G. Vijay
    Reddy, E. Venkateswara
    Reddy, E. Srinivasa
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DESIGN AND INTELLIGENT APPLICATIONS 2012 (INDIA 2012), 2012, 132 : 869 - +
  • [23] Anonymizing classification data using rough set theory
    Ye, Mingquan
    Wu, Xindong
    Hu, Xuegang
    Hu, Donghui
    [J]. KNOWLEDGE-BASED SYSTEMS, 2013, 43 : 82 - 94
  • [24] Emergent rough set data analysis
    Hassan, Y
    Tazaki, E
    [J]. KYBERNETES, 2005, 34 (5-6) : 869 - 887
  • [25] Rough Neuro-Fuzzy Structures for Classification With Missing Data
    Nowicki, Robert
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2009, 39 (06): : 1334 - 1347
  • [26] Emergent rough set data analysis
    Hassan, Y
    Tazaki, E
    [J]. TRANSACTIONS ON ROUGH SETS II: ROUGH SETS AND FUZZY SETS, 2004, 3135 : 343 - 361
  • [27] Local rough set: A solution to rough data analysis in big data
    Qian, Yuhua
    Liang, Xinyan
    Wang, Qi
    Liang, Jiye
    Liu, Bing
    Skowron, Andrzej
    Yao, Yiyu
    Ma, Jianmin
    Dang, Chuangyin
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2018, 97 : 38 - 63
  • [28] Ordering attributes for missing values prediction and data classification
    Hruschka, ER
    Ebecken, NFF
    [J]. DATA MINING III, 2002, 6 : 593 - 601
  • [29] Visualization of the critical patterns of missing values in classification data
    Wang, Hai
    Wang, Shouhong
    [J]. ADVANCES IN VISUAL INFORMATION SYSTEMS, 2007, 4781 : 267 - +
  • [30] Handling missing values in rough set analysis of multi-attribute and multi-criteria decision problems
    Greco, S
    Matarazzo, B
    Slowinski, R
    [J]. NEW DIRECTIONS IN ROUGH SETS, DATA MINING, AND GRANULAR-SOFT COMPUTING, 1999, 1711 : 146 - 157