Deep Domain Generalization Combining A Priori Diagnosis Knowledge Toward Cross-Domain Fault Diagnosis of Rolling Bearing

被引:76
|
作者
Zheng, Huailiang [1 ]
Yang, Yuantao [1 ]
Yin, Jiancheng [1 ]
Li, Yuqing [1 ]
Wang, Rixin [1 ]
Xu, Minqiang [1 ]
机构
[1] Harbin Inst Technol, Deep Space Explorat Res Ctr, Harbin 150001, Peoples R China
关键词
Deep domain generalization; fault diagnosis; rolling bearing; ROTATING MACHINERY; ELEMENT BEARING; SIGNAL; NETWORKS; MODEL;
D O I
10.1109/TIM.2020.3016068
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recent works suggest that using knowledge transfer strategies to tackle cross-domain diagnosis problems is promising for achieving engineering diagnosis. This article presents a diagnosis scheme for rolling bearing under a challenging domain generalization scenario, in which more potential discrepancies among multiple source domains are eliminated and only normal samples of the target domain are available during the training stage. To achieve sufficient generalization performance, a diagnosis scheme combining some a priori diagnosis knowledge and a deep domain generalization network for fault diagnosis (DDGFD) is elaborated. Through signal preprocessing steps guided by the a priori diagnosis knowledge, the inputs of DDGFD with a primary consistent meaning across domains are constructed from the vibration signal. On this basis, DDGFD would intently release its talent on learning discriminative and domain-invariant fault features from source domains, and then generalize the learned knowledge to identify unseen target samples. On cross-domain tasks organized using broad bearing data sets, the superiority of DDGFD is validated by comparing its performance with various data-driven diagnosis methods.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Pre-Processing Method to Improve Cross-Domain Fault Diagnosis for Bearing
    Kim, Taeyun
    Chai, Jangbom
    SENSORS, 2021, 21 (15)
  • [32] Self-supervised domain adaptation for cross-domain fault diagnosis
    Lu, Weikai
    Fan, Haoyi
    Zeng, Kun
    Li, Zuoyong
    Chen, Jian
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (12) : 10903 - 10923
  • [33] Joint Discriminative Adversarial Domain Adaptation for Cross-Domain Fault Diagnosis
    Sun, Kai
    Xu, Xinghan
    Lu, Nannan
    Xia, Huijuan
    Han, Min
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [34] AFARN: Domain Adaptation for Intelligent Cross-Domain Bearing Fault Diagnosis in Nuclear Circulating Water Pump
    Cheng, Wei
    Liu, Xue
    Xing, Ji
    Chen, Xuefeng
    Ding, Baoqing
    Zhang, Rongyong
    Zhou, Kangning
    Huang, Qian
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (03) : 3229 - 3239
  • [35] Multi-source alignment domain adaptation with similarity measurement for cross-domain bearing fault diagnosis
    Xu, Yiyun
    Chen, Liang
    Zhang, Fusheng
    Wang, Shubei
    Shi, Juanjuan
    Shen, Changqing
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (05)
  • [36] A domain adaptation model based on multiscale residual networks for aeroengine bearing cross-domain fault diagnosis
    Yang, Pu
    Geng, Huilin
    Liu, Peng
    Wen, ChenWan
    Shen, Ziwei
    MEASUREMENT & CONTROL, 2023, 56 (5-6): : 975 - 988
  • [37] A new multichannel deep adaptive adversarial network for cross-domain fault diagnosis
    Han, Baokun
    Xing, Shuo
    Wang, Jinrui
    Zhang, Zongzhen
    Bao, Huaiqian
    Zhang, Xiao
    Jiang, Xingwang
    Liu, Zongling
    Yang, Zujie
    Ma, Hao
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (06)
  • [38] Dynamic feature separation domain generalization for bearing fault diagnosis
    Cai, Haichao
    Yang, Bo
    Xue, Yujun
    Li, Jubo
    Xu, Yanwei
    Yang, Xiaokang
    Ye, Jun
    ENGINEERING RESEARCH EXPRESS, 2024, 6 (04):
  • [39] Deep causal factorization network: A novel domain generalization method for cross-machine bearing fault diagnosis
    Jia, Sixiang
    Li, Yongbo
    Wang, Xinyue
    Sun, Dingyi
    Deng, Zichen
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 192
  • [40] Prediction Consistency Guided Convolutional Neural Networks for Cross-Domain Bearing Fault Diagnosis
    Wu, Songsong
    Jing, Xiao-Yuan
    Zhang, Qinghua
    Wu, Fei
    Zhao, Haifeng
    Dong, Yuning
    Jing, Xiao-Yuan (jingxy_2000@126.com); Zhang, Qinghua (fengliangren@tom.com), 1600, Institute of Electrical and Electronics Engineers Inc. (08): : 120089 - 120103