Semiparametric estimation of conditional mean functions with missing data -: Combining parametric moments with matching

被引:1
|
作者
Frolich, Markus
机构
[1] Univ St Gallen, SIAW, CH-9000 St Gallen, Switzerland
[2] UCL, Dept Econ, London WC1E 6BT, England
关键词
D O I
10.1007/s00181-005-0019-4
中图分类号
F [经济];
学科分类号
02 ;
摘要
A new semiparametric estimator for estimating conditional expectation functions from incomplete data is proposed, which integrates parametric regression with nonparametric matching estimators. Besides its applicability to missing data situations due to non-response or attrition, the estimator can also be used for analyzing treatment effect heterogeneity and statistical treatment rules, where data on potential outcomes is missing by definition. By combining moments from a parametric specification with nonparametric estimates of mean outcomes in the non-responding population within a GMM framework, the estimator seeks to balance a good fit in the responding population with low bias in the non-responding population. The estimator is applied to analyzing treatment effect heterogeneity among Swedish rehabilitation programmes.
引用
下载
收藏
页码:333 / 367
页数:35
相关论文
共 50 条
  • [31] Optimal imputation of missing data for estimation of population mean
    Bhushan, Shashi
    Pandey, Abhay Pratap
    JOURNAL OF STATISTICS & MANAGEMENT SYSTEMS, 2016, 19 (06): : 755 - 766
  • [32] Mean estimation with data missing at random for functional covariables
    Ferraty, Frederic
    Sued, Mariela
    Vieu, Philippe
    STATISTICS, 2013, 47 (04) : 688 - 706
  • [33] Mean estimation with calibration techniques in presence of missing data
    Rueda, M.
    Martinez, S.
    Martinez, H.
    Arcos, A.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (11) : 3263 - 3277
  • [34] Estimation of conditional cumulative incidence functions under generalized semiparametric regression models with missing covariates, with application to analysis of biomarker correlates in vaccine trials
    Sun, Yanqing
    Heng, Fei
    Lee, Unkyung
    Gilbert, Peter B.
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2023, 51 (01): : 235 - 257
  • [35] Sieve estimation of semiparametric accelerated mean models with panel count data
    Hu, Xiangbin
    Su, Wen
    Zhao, Xingqiu
    ELECTRONIC JOURNAL OF STATISTICS, 2023, 17 (01): : 1316 - 1343
  • [36] Conditional maximum likelihood estimation for semiparametric transformation models with doubly truncated data
    Shen, Pao-sheng
    Hsu, Huichen
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 144
  • [37] Imputation-based semiparametric estimation for INAR(1) processes with missing data
    Xiong, Wei
    Wang, Dehui
    Wang, Xinyang
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 49 (05): : 1843 - 1864
  • [38] Semiparametric estimation of treatment effect in a pretest-posttest study with missing data
    Davidian, M
    Tsiatis, AA
    Leon, S
    STATISTICAL SCIENCE, 2005, 20 (03) : 261 - 282
  • [39] Multiple Imputation with Predictive Mean Matching Method for Numerical Missing Data
    Akmam, Emha Fathul
    Siswantining, Titin
    Soemartojo, Saskya Mary
    Sarwinda, Devvi
    2019 3RD INTERNATIONAL CONFERENCE ON INFORMATICS AND COMPUTATIONAL SCIENCES (ICICOS 2019), 2019,
  • [40] Parametric and semiparametric estimation methods for survival data under a flexible class of models
    He, Wenqing
    Yi, Grace Y.
    LIFETIME DATA ANALYSIS, 2020, 26 (02) : 369 - 388