Process Simulation and Economic Analysis of Pre-combustion CO2 Capture With Deep Eutectic Solvents

被引:16
|
作者
Xin, Kun [1 ]
Hashish, Mahmoud [1 ]
Roghair, Ivo [1 ]
van Sint Annaland, Martin [1 ]
机构
[1] Eindhoven Univ Technol, Chem Proc Intensificat, Dept Chem Engn & Chem, Eindhoven, Netherlands
来源
FRONTIERS IN ENERGY RESEARCH | 2020年 / 8卷 / 08期
关键词
pre-combustion CO2 capture; property study; deep eutectic solvent; rate-based model; capture cost; selexol process; MASS-TRANSFER CORRELATIONS; CARBON-DIOXIDE; PHYSICAL ABSORPTION; IONIC LIQUIDS; SOLUBILITY; EQUATION; SAFT;
D O I
10.3389/fenrg.2020.573267
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The purpose of this paper is to identify firstly the most important solvent characteristics in the CO2 capture process and secondly to determine how they contribute to the total cost of CO2 separation and analyze the economic feasibility of current deep eutectic solvents (DESs) in literature. A rate-based modeling approach was adopted to simulate pre-combustion CO2 capture. The effects of the flow model and the number of segments were investigated for the Selexol process. Different mass transfer correlations due to Bravo et al. (1985), Billet and Schultes (1993) and Hanley and Chen (2012) were adopted for the rate-based models and compared with the equilibrium modelling approach. Subsequently, property and process models were developed for a mixture of decanoic acid and menthol, in equal quantities. A physical property study was conducted with this DES. The CO2 solubility is found to be very important in all rate-based models, as expected, but properties such as the surface tension, thermal conductivity, heat capacity and volatility had a minor influence on the absorption performance. The solvent viscosity strongly affects the mass transfer rate when using the Hanley and Chen (2012) correlations, whereas it plays only a small role in the other two sets of correlations. Using a high CO2 solubility as criterion, two mixtures of allyl triphenylphosphonium bromide (ATPPB) and diethylene glycol (DEG) were screened out from literature. The conventional Selexol process was set as the benchmark for the evaluation of the performances of these DESs. The optimum capture cost for Selexol process is 27.22, 26.66 and 30.84 $(2018)/tonne CO2 for the adopted correlations, respectively. When employing two of the three studied mass transfer correlations, the estimated process costs for a capture process using this DES can be similar to the costs of the Selexol process. However, when the liquid viscosity strongly affects the mass transfer rate, as is the case when using the Hanley and Chen (2012) correlations, the Selexol process remains more economical. This strongly indicates the need for further experimental and modelling studies on mass transfer rates in absorption columns (with higher viscosity liquids) to help directing the development of suitable DESs for pre-combustion CO2 capture.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Mechanism Modeling of Elevated Temperature Pressure Swing Adsorption Process for Pre-combustion CO2 Capture
    Zheng, Yam
    Shi, Yixiang
    Li, Shuang
    Cai, Ningsheng
    GHGT-11, 2013, 37 : 2307 - 2315
  • [32] Pre-combustion CO2 capture by MDEA process in IGCC based on air-blown gasification
    Moioli, Stefania
    Giuffrida, Antonio
    Gamba, Simone
    Romano, Matteo C.
    Pellegrini, Laura
    Lozza, Giovanni
    12TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-12, 2014, 63 : 2045 - 2053
  • [33] DEGRADATION STUDY OF DEEP EUTECTIC SOLVENTS IN CO2 CAPTURE TECHNOLOGIES
    Brettfeld, Eliza Gabriela
    Oancea, Florin
    Dincă, Cristian
    UPB Scientific Bulletin, Series B: Chemistry and Materials Science, 2023, 85 (01): : 89 - 100
  • [34] Interfacial Properties of Deep Eutectic Solvents Regarding to CO2 Capture
    Garcia, Gregorio
    Atilhan, Mert
    Aparicio, Santiago
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (37): : 21413 - 21425
  • [35] Physicochemical Properties and Applications of Deep Eutectic Solvents for CO2 Capture
    Biswas, Rima
    CHEMICAL ENGINEERING & TECHNOLOGY, 2024, 47 (01) : 20 - 35
  • [36] DEGRADATION STUDY OF DEEP EUTECTIC SOLVENTS IN CO2 CAPTURE TECHNOLOGIES
    Brettfeld Mihaila, Eliza Gabriela
    Oancea, Florin
    Dinca, Cristian
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN SERIES B-CHEMISTRY AND MATERIALS SCIENCE, 2023, 85 (01): : 89 - 100
  • [37] Hydrotalcite/SBA15 composites for pre-combustion CO2 capture: CO2 adsorption characteristics
    Peng, Jiaxi
    Iruretagoyena, Diana
    Chadwick, David
    JOURNAL OF CO2 UTILIZATION, 2018, 24 : 73 - 80
  • [38] A carbon molecular sieve membrane-based reactive separation process for pre-combustion CO2 capture
    Cao, Mingyuan
    Zhao, Linghao
    Xu, Dongwan
    Ciora, Richard
    Liu, Paul K. T.
    Manousiouthakis, Vasilios, I
    Tsotsis, Theodore T.
    JOURNAL OF MEMBRANE SCIENCE, 2020, 605
  • [39] Effect of Power Plant Capacity on the CAPEX, OPEX, and LCOC of the CO2 Capture Process in Pre-Combustion Applications
    Ashkanani, Husain E.
    Wang, Rui
    Shi, Wei
    Siefert, Nicholas S.
    Thompson, Robert L.
    Smith, Kathryn
    Steckel, Janice A.
    Gamwo, Isaac K.
    Hopkinson, David
    Resnik, Kevin
    Morsi, Badie, I
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2021, 109
  • [40] Breakthrough adsorption study of a commercial activated carbon for pre-combustion CO2 capture
    Garcia, S.
    Gil, M. V.
    Martin, C. F.
    Pis, J. J.
    Rubiera, F.
    Pevida, C.
    CHEMICAL ENGINEERING JOURNAL, 2011, 171 (02) : 549 - 556