Thermal Ionization for Short-Range Potentials

被引:0
|
作者
Hasler, David [1 ]
Siebert, Oliver [1 ]
机构
[1] Friedrich Schiller Univ Jena, Dept Math, Ernst Abbe Pl 2, D-07743 Jena, Germany
关键词
Liouvillian; Open quantum system; Positive commutators; Positive temperature representation; Scattering functions; Stationary phase; POSITIVE COMMUTATORS; QUANTUM FRICTION; EQUILIBRIUM; SPECTRUM; STATES; RETURN; ATOMS; MODEL;
D O I
10.1007/s10955-020-02688-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a concrete model of a confined particle in form of a Schrodinger operator with a compactly supported smooth potential coupled to a bosonic field at positive temperature. We show, that the model exhibits thermal ionization for any positive temperature, provided the coupling is sufficiently small. Mathematically, one has to rule out that zero is an eigenvalue of the self-adjoint generator of time evolution-the Liouvillian. This will be done by using positive commutator methods with dilations in the space of scattering functions. Our proof relies on a spatial cutoff in the coupling but does otherwise not require any unnatural restrictions.
引用
收藏
页数:54
相关论文
共 50 条
  • [21] MULTIPHOTON IONIZATION IN A SHORT-RANGE POTENTIAL - A NONPERTURBATIVE APPROACH
    SUSSKIND, SM
    COWLEY, SC
    VALEO, EJ
    [J]. PHYSICAL REVIEW A, 1990, 42 (05): : 3090 - 3106
  • [22] Influence of short-range interference on ionization threshold law
    Miyashita, N
    Watanabe, S
    Matsuzawa, M
    Macek, JH
    [J]. PHYSICAL REVIEW A, 2000, 61 (01): : 3
  • [23] ANALYTIC EXPRESSIONS FOR PHASE SHIFTS FOR SHORT-RANGE POTENTIALS
    ALMSTROM, H
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1969, 64 (02): : 318 - +
  • [24] SOLUTIONS OF FADDEEV EQUATION FOR SHORT-RANGE LOCAL POTENTIALS
    BALL, JS
    WONG, DY
    [J]. PHYSICAL REVIEW, 1968, 169 (05): : 1362 - &
  • [25] Inverse scattering for Stark Hamiltonians with short-range potentials
    Nicoleau, F
    [J]. ASYMPTOTIC ANALYSIS, 2003, 35 (3-4) : 349 - 359
  • [26] Localization on short-range potentials in dissipative quantum mechanics
    Melikidze, A
    [J]. PHYSICAL REVIEW LETTERS, 2001, 87 (10)
  • [27] Harmonic trap method for complex short-range potentials
    Zhang, Hantao
    Bai, Dong
    Ren, Zhongzhou
    [J]. PHYSICS LETTERS B, 2024, 855
  • [28] SCATTERING ON SHORT-RANGE POTENTIALS IN INSB - A PSEUDOPOTENTIAL CALCULATION
    GORCZYCA, I
    [J]. PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1981, 103 (02): : 529 - 533
  • [29] COUNTING BOUND STATES IN SHORT-RANGE CENTRAL POTENTIALS
    SCHEY, HM
    SCHWARTZ, JL
    [J]. PHYSICAL REVIEW, 1965, 139 (5B): : 1428 - &
  • [30] REGGE TRAJECTORIES FOR A CLASS OF WEAK SHORT-RANGE POTENTIALS
    FLAMM, D
    [J]. NUOVO CIMENTO, 1963, 29 (05): : 1080 - +