Lever-type quasi-zero stiffness vibration isolator with magnetic spring

被引:103
|
作者
Yan, Bo [1 ]
Yu, Ning [1 ]
Wang, Zhihao [1 ]
Wu, Chuanyu [1 ]
Wang, Sen [2 ]
Zhang, Wenming [2 ]
机构
[1] Zhejiang Sci Tech Univ, Fac Mech Engn & Automat, Hangzhou 310018, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Mech Engn, State Key Lab Mech Syst & Vibrat, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Quasi-zero stiffness; vibration isolation; lever; nonlinear vibration; eddy current damping; LOW-DYNAMIC STIFFNESS; NEGATIVE STIFFNESS; FORCE TRANSMISSIBILITY; NONLINEAR ISOLATOR; DESIGN; SYSTEM;
D O I
10.1016/j.jsv.2022.116865
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Unlike the tuning of the vibration isolation band through stiffness and geometric parameters in traditional quasi-zero stiffness (QZS) vibration isolators (VIs), this study presents a lever-type QZS vibration isolator (L-QZS-VI) to improve the vibration isolation performance. The QZS charac-teristic is realized with a magnetic spring. Eddy current damping (ECD) is used to eliminate the jump phenomenon and improve the vibration isolation performance. A theoretical model of L-QZS-VI with ECD is developed and the corresponding governing equation is obtained using the Lagrange equation. The displacement transmissibility is derived using the harmonic balance method. The effects of the tip mass of the lever, lever ratio, nonlinear stiffness of the magnetic spring and excitation amplitude on the vibration isolation performance of the L-QZS-VI are analyzed numerically and experimentally. The vibration isolation performance can be largely improved by tuning the lever ratio, tip mass of the lever, and nonlinear stiffness of the magnetic spring. The ECD can produce tunable damping to further improve the vibration suppression performance in the resonance region. This study provides a guideline to design, model, and optimize L-QZS-VI.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Dynamic analysis of a quasi-zero stiffness vibration isolator in propulsion shaft system
    Li, Xinbin
    Huang, Suhe
    Xu, Yajun
    Liu, Jing
    Liu, Jianyu
    Pan, Guang
    OCEAN ENGINEERING, 2024, 313
  • [32] Analysis of Quasi-Zero Stiffness Vibration Isolator with Fluidic Actuators and Composite Material
    Solaiachari, Sivakumar
    Lakshmipathy, Jayakumar
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF MECHANICAL ENGINEERING, 2022, 46 (04) : 863 - 873
  • [33] A quasi-zero stiffness vibration isolator based on hybrid bistable composite laminate
    Li H.
    Zhao F.
    Zhou X.
    Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2019, 51 (02): : 354 - 363
  • [34] Resonance Response of a Quasi-zero Stiffness Vibration Isolator Considering a Constant Force
    Chun Cheng
    Shunming Li
    Yong Wang
    Xingxing Jiang
    Journal of Vibration Engineering & Technologies, 2018, 6 : 471 - 481
  • [35] Vibration Isolator using Hybrid Reluctance Actuator toward Quasi-zero Stiffness
    Takahashi, Kazuki
    Makino, Ryuto
    Ito, Shingo
    IFAC PAPERSONLINE, 2023, 56 (02): : 3392 - 3397
  • [36] Analysis of Quasi-Zero Stiffness Vibration Isolator with Fluidic Actuators and Composite Material
    Sivakumar Solaiachari
    Jayakumar Lakshmipathy
    Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 2022, 46 : 863 - 873
  • [37] Dynamic Characteristics of Inerter-based Quasi-zero Stiffness Vibration Isolator
    Wang Y.
    Li H.
    Cheng C.
    Ding H.
    Chen L.
    Zhendong Ceshi Yu Zhenduan/Journal of Vibration, Measurement and Diagnosis, 2021, 41 (06): : 1124 - 1131
  • [38] Accurate modeling and analysis of a typical nonlinear vibration isolator with quasi-zero stiffness
    Chaoran Liu
    Kaiping Yu
    Nonlinear Dynamics, 2020, 100 : 2141 - 2165
  • [39] Evolution of the geometric structure of strange attractors of a quasi-zero stiffness vibration isolator
    Margielewicz, Jerzy
    Gaska, Damian
    Litak, Grzegorz
    CHAOS SOLITONS & FRACTALS, 2019, 118 : 47 - 57
  • [40] Resonance Response of a Quasi-zero Stiffness Vibration Isolator Considering a Constant Force
    Cheng, Chun
    Li, Shunming
    Wang, Yong
    Jiang, Xingxing
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2018, 6 (06) : 471 - 481