In this paper, we introduce a self-adaptive inertial gradient projection algorithm for solving monotone or strongly pseudomonotone variational inequalities in real Hilbert spaces. The algorithm is designed such that the stepsizes are dynamically chosen and its convergence is guaranteed without the Lipschitz continuity and the paramonotonicity of the underlying operator. We will show that the proposed algorithm yields strong convergence without being combined with the hybrid/viscosity or linesearch methods. Our results improve and develop previously discussed gradient projection-type algorithms by Khanh and Vuong (J. Global Optim. 58, 341-350 2014).
机构:
Hanoi Univ Sci & Technol, Sch Appl Math & Informat, 1 Dai Co Viet, Hanoi, VietnamHanoi Univ Sci & Technol, Sch Appl Math & Informat, 1 Dai Co Viet, Hanoi, Vietnam
机构:
Nanjing Normal Univ, Sch Math & Comp Sci, Inst Math, Nanjing 210097, Peoples R ChinaNanjing Normal Univ, Sch Math & Comp Sci, Inst Math, Nanjing 210097, Peoples R China
Yan, Xihong
Han, Deren
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Sch Math & Comp Sci, Inst Math, Nanjing 210097, Peoples R ChinaNanjing Normal Univ, Sch Math & Comp Sci, Inst Math, Nanjing 210097, Peoples R China
Han, Deren
Sun, Wenyu
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Sch Math & Comp Sci, Inst Math, Nanjing 210097, Peoples R ChinaNanjing Normal Univ, Sch Math & Comp Sci, Inst Math, Nanjing 210097, Peoples R China