A protocol for RNA methylation differential analysis with MeRIP-Seq data and exomePeak R/Bioconductor package

被引:273
|
作者
Meng, Jia [1 ]
Lu, Zhiliang [1 ]
Liu, Hui [2 ]
Zhang, Lin [2 ]
Zhang, Shaowu [3 ]
Chen, Yidong [4 ,5 ]
Rao, Manjeet K. [5 ,6 ]
Huang, Yufei [4 ,7 ]
机构
[1] Xian Jiaotong Liverpool Univ, Dept Biol Sci, Suzhou 215123, Peoples R China
[2] China Univ Min & Technol, Sch Informat & Elect Engn, Xuzhou 221116, Peoples R China
[3] Northwestern Polytech Univ, Sch Automat, Xian 710072, Peoples R China
[4] Univ Texas Hlth Sci Ctr San Antonio, Dept Cellular Struct Biol, San Antonio, TX 78229 USA
[5] Univ Texas Hlth Sci Ctr San Antonio, Greehey Childrens Canc Res Inst, San Antonio, TX 78229 USA
[6] Univ Texas Hlth Sci Ctr San Antonio, Dept Epidemiol & Biostat, San Antonio, TX 78229 USA
[7] Univ Texas San Antonio, Dept Elect & Comp Engn, San Antonio, TX 78249 USA
基金
中国博士后科学基金; 美国国家卫生研究院; 美国国家科学基金会; 中国国家自然科学基金;
关键词
RNA methylation; MeRIP-Seq; exomePeak; Differential RNA methylation; N6-methyladenosine (m6A); MESSENGER-RNA; NUCLEAR-RNA; CHIP; ENRICHMENT; TRANSCRIPTION; EXPRESSION; CHALLENGES;
D O I
10.1016/j.ymeth.2014.06.008
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Despite the prevalent studies of DNA/Chromatin related epigenetics, such as, histone modifications and DNA methylation, RNA epigenetics has not drawn deserved attention until a new affinity-based sequencing approach MeRIP-Seq was developed and applied to survey the global mRNA N6-methyladenosine (m(6)A) in mammalian cells. As a marriage of ChIP-Seq and RNA-Seq, MeRIP-Seq has the potential to study the transcriptome-wide distribution of various post-transcriptional RNA modifications. We have previously developed an R/Bioconductor package 'exomePeak' for detecting RNA methylation sites under a specific experimental condition or the identifying the differential RNA methylation sites in a case control study from MeRIP-Seq data. Compared with other relatively well studied data types such as ChIP-Seq and RNA-Seq, the study of MeRIP-Seq data is still at very early stage, and existing protocols are not optimized for dealing with the intrinsic characteristic of MeRIP-Seq data. We therein provide here a detailed and easy-to-use protocol of using exomePeak R/Bioconductor package along with other software programs for analysis of MeRIP-Seq data, which covers raw reads alignment, RNA methylation site detection, motif discovery, differential RNA methylation analysis, and functional analysis. Particularly, the rationales behind each processing step as well as the specific method used, the best practice, and possible alternative strategies are briefly discussed. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:274 / 281
页数:8
相关论文
共 50 条
  • [21] ideal: an R/Bioconductor package for interactive differential expression analysis
    Marini, Federico
    Linke, Jan
    Binder, Harald
    BMC BIOINFORMATICS, 2020, 21 (01)
  • [22] ideal: an R/Bioconductor package for interactive differential expression analysis
    Federico Marini
    Jan Linke
    Harald Binder
    BMC Bioinformatics, 21
  • [23] Data quality aware analysis of differential expression in RNA-seq with NOISeq R/Bioc package
    Tarazona, Sonia
    Furio-Tari, Pedro
    Turra, David
    Di Pietro, Antonio
    Jose Nueda, Maria
    Ferrer, Alberto
    Conesa, Ana
    NUCLEIC ACIDS RESEARCH, 2015, 43 (21)
  • [24] NanoMethViz: An R/Bioconductor package for visualizing long-read methylation data
    Su, Shian
    Gouil, Quentin
    Blewitt, Marnie E.
    Cook, Dianne
    Hickey, Peter F.
    Ritchie, Matthew E.
    PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (10)
  • [25] SpidermiR: An R/Bioconductor Package for Integrative Analysis with miRNA Data
    Cava, Claudia
    Colaprico, Antonio
    Bertoli, Gloria
    Graudenzi, Alex
    Silva, Tiago C.
    Olsen, Catharina
    Noushmehr, Houtan
    Bontempi, Gianluca
    Mauri, Giancarlo
    Castiglioni, Isabella
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2017, 18 (02)
  • [26] Seq2pathway: an R/Bioconductor package for pathway analysis of next-generation sequencing data
    Wang, Bin
    Cunningham, John M.
    Yang, Xinan
    BIOINFORMATICS, 2015, 31 (18) : 3043 - 3045
  • [27] TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data
    Colaprico, Antonio
    Silva, Tiago C.
    Olsen, Catharina
    Garofano, Luciano
    Cava, Claudia
    Garolini, Davide
    Sabedot, Thais S.
    Malta, Tathiane M.
    Pagnotta, Stefano M.
    Castiglioni, Isabella
    Ceccarelli, Michele
    Bontempi, Gianluca
    Noushmehr, Houtan
    NUCLEIC ACIDS RESEARCH, 2016, 44 (08) : e71
  • [28] DChIPRep, an R/Bioconductor package for differential enrichment analysis in chromatin studies
    Chabbert, Christophe D.
    Steinmetz, Lars M.
    Klaus, Bernd
    PEERJ, 2016, 4
  • [29] A Computational Pipeline for Cross-Species Analysis of RNA-seq Data Using R and Bioconductor
    LoVerso, Peter R.
    Cui, Feng
    BIOINFORMATICS AND BIOLOGY INSIGHTS, 2015, 9 : 165 - 174
  • [30] breakpointR: an R/Bioconductor package to localize strand state changes in Strand-seq data
    Porubsky, David
    Sanders, Ashley D.
    Taudt, Aaron
    Colome-Tatche, Maria
    Lansdorp, Peter M.
    Guryev, Victor
    BIOINFORMATICS, 2020, 36 (04) : 1260 - 1261