Adaptive Mesh Refinement and Adaptive Time Integration for Electrical Wave Propagation on the Purkinje System

被引:1
|
作者
Ying, Wenjun [1 ,2 ]
Henriquez, Craig S. [3 ,4 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Math, MOE LSC, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Inst Nat Sci, Shanghai 200240, Peoples R China
[3] Duke Univ, Dept Biomed Engn, Durham, NC 27708 USA
[4] Duke Univ, Dept Comp Sci, Durham, NC 27708 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
D O I
10.1155/2015/137482
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
A both space and time adaptive algorithm is presented for simulating electrical wave propagation in the Purkinje system of the heart. The equations governing the distribution of electric potential over the system are solved in time with the method of lines. At each timestep, by an operator splitting technique, the space-dependent but linear diffusion part and the nonlinear but space-independent reactions part in the partial differential equations are integrated separately with implicit schemes, which have better stability and allow larger timesteps than explicit ones. The linear diffusion equation on each edge of the system is spatially discretized with the continuous piecewise linear finite element method. The adaptive algorithm can automatically recognize when and where the electrical wave starts to leave or enter the computational domain due to external current/voltage stimulation, self-excitation, or local change of membrane properties. Numerical examples demonstrating efficiency and accuracy of the adaptive algorithm are presented.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] ADAPTIVE MESH REFINEMENT FOR WAVE-PROPAGATION IN NONLINEAR SOLIDS
    TRANGENSTEIN, JA
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1995, 16 (04): : 819 - 839
  • [2] Adaptive mesh refinement using wave-propagation algorithms for hyperbolic systems
    Berger, MJ
    Leveque, RJ
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (06) : 2298 - 2316
  • [3] IMPLICIT ADAPTIVE MESH REFINEMENT FOR DISPERSIVE TSUNAMI PROPAGATION
    Berger, Marsha J.
    Leveque, Randall J.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2024, 46 (04): : B554 - B578
  • [4] Adaptive mesh refinement techniques for electrical impedance tomography
    Molinari, M
    Cox, SJ
    Blott, BH
    Daniell, GJ
    [J]. PHYSIOLOGICAL MEASUREMENT, 2001, 22 (01) : 91 - 96
  • [5] Optimal imaging with adaptive mesh refinement in electrical impedance tomography
    Molinari, M
    Blott, BH
    Cox, SJ
    Daniell, GJ
    [J]. PHYSIOLOGICAL MEASUREMENT, 2002, 23 (01) : 121 - 128
  • [6] NUMERICAL SIMULATION OF SOLITARY WAVE BREAKING WITH ADAPTIVE MESH REFINEMENT
    Zhang, Yunxing
    Duan, Wenyang
    Liao, Kangping
    Ma, Shan
    Xia, Guihua
    [J]. PROCEEDINGS OF THE ASME 38TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2019, VOL 2, 2019,
  • [7] Parallel adaptive mesh refinement
    Diachin, Lori Freitag
    Hornung, Richard
    Plassmann, Paul
    Wissink, Andy
    [J]. PARALLEL PROCESSING FOR SCIENTIFIC COMPUTING, 2006, : 143 - 162
  • [8] Cosmological adaptive mesh refinement
    Norman, ML
    Bryan, GL
    [J]. NUMERICAL ASTROPHYSICS, 1999, 240 : 19 - 28
  • [9] Adaptive mesh generation and refinement
    Xia Delan
    Tan Guihui
    [J]. ICEMI 2007: PROCEEDINGS OF 2007 8TH INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS, VOL III, 2007, : 586 - +
  • [10] Structured adaptive mesh refinement using leapfrog time integration on a staggered grid for ocean models
    Herrnstein, A
    Wickett, M
    Rodrigue, G
    [J]. OCEAN MODELLING, 2005, 9 (03) : 283 - 304