On the Prolate Spheroidal Wave Functions and Hardy's Uncertainty Principle

被引:2
|
作者
Pauwels, Elmar [1 ]
de Gosson, Maurice [1 ]
机构
[1] Univ Vienna, Fac Math, NuHAG, Vienna, Austria
关键词
Hardy uncertainty principle; Prolate spheroidal wave functions; Fourier transform; Signal theory; FOURIER-ANALYSIS;
D O I
10.1007/s00041-014-9319-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a weak version of Hardy's uncertainty principle using properties of the prolate spheroidal wave functions. We describe the eigenvalues of the sum of a time limiting operator and a band limiting operator acting on . A weak version of Hardy's uncertainty principle follows from the asymptotic behavior of the largest eigenvalue as the time limit and the band limit approach infinity. An asymptotic formula for this eigenvalue is obtained from its well-known counterpart for the prolate integral operator.
引用
收藏
页码:566 / 576
页数:11
相关论文
共 50 条
  • [41] PROLATE SPHEROIDAL WAVE-FUNCTIONS, FOURIER-ANALYSIS, AND UNCERTAINTY .5. DISCRETE CASE
    SLEPIAN, D
    BELL SYSTEM TECHNICAL JOURNAL, 1978, 57 (05): : 1371 - 1430
  • [42] Prolate spheroidal wave functions associated with the quaternionic Fourier transform
    Zou, Cuiming
    Kou, Kit Ian
    Morais, Joao
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (11) : 4003 - 4020
  • [43] Bandlimited signal extrapolation using prolate spheroidal wave functions
    Devasia, A. (amal.devasia@dal.ca), 1600, International Association of Engineers (40):
  • [44] OPTIMUM RESOLUTION GAIN WITH PROLATE SPHEROIDAL WAVE-FUNCTIONS
    KIRLIN, RL
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1974, 64 (03) : 404 - 406
  • [45] ACCURATE COMPUTATION OF EIGENVALUES FOR PROLATE SPHEROIDAL WAVE-FUNCTIONS
    SINHA, BP
    MACPHIE, RH
    PRASAD, T
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1973, AP21 (03) : 406 - 407
  • [46] On the evaluation of prolate spheroidal wave functions and associated quadrature rules
    Osipov, Andrei
    Rokhlin, Vladimir
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2014, 36 (01) : 108 - 142
  • [47] Prolate spheroidal wave functions induce Gaussian chip waveforms
    Jitsumatsu, Yutaka
    Kohda, Tohru
    2008 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-6, 2008, : 1363 - 1367
  • [48] On the numerical evaluation of the prolate spheroidal wave functions of order zero
    Bremer, James
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2022, 60 : 53 - 76
  • [49] Prolate spheroidal wave functions generation method based on IDFT
    Kang, Jia-Fang
    Wang, Hong-Xing
    Liu, Chuan-Hui
    Zhao, Zhi-Yong
    Liu, Xi-Guo
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2014, 48 (03): : 357 - 362
  • [50] Calculation of radial prolate spheroidal wave functions of the second kind
    Kirby, R.
    COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (03) : 514 - 519