Bayesian Mixture of AR Models for Time Series Clustering

被引:2
|
作者
Venkatararnana, Kini B. [1 ]
Sekhar, C. Chandra [2 ]
机构
[1] Honeywell Technol Solut Lab, Bangalore 560076, Karnataka, India
[2] Indian Inst Technol, Dept Comp Sci & Engg, Madras 600036, Tamil Nadu, India
关键词
D O I
10.1109/ICAPR.2009.101
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we propose a Bayesian framework for estimation of parameters of a mixture of autoregressive model, for time series clustering. The proposed approach is based on variational principles and provides a tractable approximation to the true posterior density that minimizes Kullback-Liebler(KL) divergence w.r.t prior distribution. The proposed approach is applied both on simulated and real time series data sets and found to be useful in exploring and finding the true number of underlying clusters, starting from arbitrarily large number clusters.
引用
收藏
页码:35 / 38
页数:4
相关论文
共 50 条
  • [31] Bayesian Semiparametric Local Clustering of Multiple Time Series Data
    Fan, Jingjing
    Sarkar, Abhra
    TECHNOMETRICS, 2024, 66 (02) : 282 - 294
  • [32] Discrimination of AR, MA, and ARMA Time Series Models
    Chan, H. T.
    Chinipardaz, R.
    Cox, T. F.
    Communications in Statistics. Part A: Theory and Methods, 25 (06):
  • [33] Discrimination of AR, MA and ARMA time series models
    Chan, HT
    Chinipardaz, R
    Cox, TF
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1996, 25 (06) : 1247 - 1260
  • [34] On clustering by mixture models
    McLachlan, GJ
    Ng, SK
    Peel, D
    EXPLORATORY DATA ANALYSIS IN EMPIRICAL RESEARCH, PROCEEDINGS, 2003, : 141 - 148
  • [35] Bayesian curve fitting and clustering with Dirichlet process mixture models for microarray data
    Ju-Hyun Park
    Minjung Kyung
    Journal of the Korean Statistical Society, 2019, 48 : 207 - 220
  • [36] Bayesian curve fitting and clustering with Dirichlet process mixture models for microarray data
    Park, Ju-Hyun
    Kyung, Minjung
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2019, 48 (02) : 207 - 220
  • [37] Online nonparametric Bayesian analysis of parsimonious Gaussian mixture models and scenes clustering
    Zhou, Ri-Gui
    Wang, Wei
    ETRI JOURNAL, 2021, 43 (01) : 74 - 81
  • [38] The full Bayesian significance test for mixture models: results in gene expression clustering
    Lauretto, M. S.
    Pereira, C. A. B.
    Stern, J. M.
    GENETICS AND MOLECULAR RESEARCH, 2008, 7 (03): : 883 - 897
  • [39] A Bayesian proposal for the analysis of stationary and nonstationary AR(1) time series
    Marinucci, D
    Petrella, L
    BAYESIAN STATISTICS 6, 1999, : 821 - 828
  • [40] On Bayesian Clustering with a Structured Gaussian Mixture
    Yamazaki, Keisuke
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2014, 18 (06) : 1007 - 1012