On the applicability of membrane technology to the catalysed dry reforming of methane

被引:41
|
作者
Ferreira-Aparicio, P
Rodríguez-Ramos, I
Guerrero-Ruiz, A
机构
[1] CSIC, Inst Catalisis & Petr Quim, Madrid 28049, Spain
[2] Univ Nacl Educ Distancia, Dept Quim Inorgan & Tecn, Madrid 28040, Spain
关键词
carbon dioxide reforming of methane; membrane reactor; porous ceramic membrane; syngas production;
D O I
10.1016/S0926-860X(02)00337-X
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The coupling of a catalytic reactor and a separator in the same unit is an attractive concept which still entails complex technological problems caused by the generally severe conditions at which a large part of heterogeneous catalytic reactions take place. The application of this technology to the conversion enhancement in reversible chemical reactions with high reaction enthalpies can provide interesting advances in the methane conversion processes. This paper analyses the applicability of mesoporous ceramic filters in a membrane reactor to carry out the reforming of methane with carbon dioxide. The effect of the variation of the sweep gas flow rate as compared to the feed rate of reactants has been studied. It has been observed that, even for membranes in which the main mechanism for the gas transport is the Knudsen diffusion, high sweep gas flows rates induce large changes in the distribution of species at both sides of the membrane. This change is dependent on the membrane permeance and gives place not only to a moderate conversion enhancement but also to maximise selectivity to hydrogen by hindering the progress of the secondary reverse water gas shift reaction. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:239 / 252
页数:14
相关论文
共 50 条
  • [11] Kinetic Analysis of Dry Reforming of Methane on Traditional and Membrane Catalysts
    N. N. Gavrilova
    S. A. Gubin
    M. A. Myachina
    V. N. Sapunov
    V. V. Skudin
    Membranes and Membrane Technologies, 2023, 5 : 440 - 453
  • [12] Comparison of Membrane and Conventional Reactors under Dry Methane Reforming Conditions
    Alexandrov, A. V.
    Gavrilova, N. N.
    Kislov, V. R.
    Skudin, V. V.
    PETROLEUM CHEMISTRY, 2017, 57 (09) : 804 - 812
  • [13] Design aspects of membrane reactors for dry reforming of methane for the production of hydrogen
    Onstot, WJ
    Minet, RG
    Tsotsis, TT
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2001, 40 (01) : 242 - 251
  • [14] Intensification of Dry Reforming of Methane on Membrane Catalyst: Confirmation and Development of the Hypothesis
    Gavrilova, Natalia
    Gubin, Sergey
    Myachina, Maria
    Sapunov, Valentin
    Skudin, Valery
    MEMBRANES, 2022, 12 (02)
  • [15] Comparison of membrane and conventional reactors under dry methane reforming conditions
    A. V. Alexandrov
    N. N. Gavrilova
    V. R. Kislov
    V. V. Skudin
    Petroleum Chemistry, 2017, 57 : 804 - 812
  • [16] Ceramic-membrane technology simplifies steam methane reforming
    Ondrey, Gerald
    Chemical Engineering (United States), 2018, 125 (01):
  • [18] Structured catalysts for dry reforming of methane
    Nair, Mahesh Muraleedharan
    Kaliaguine, Serge
    NEW JOURNAL OF CHEMISTRY, 2016, 40 (05) : 4049 - 4060
  • [19] Stabilizing catalysts for dry reforming of methane
    Littlewood, Patrick
    Stair, Peter
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [20] Carbon deposition in methane reforming with carbon dioxide dry reforming
    Gronchi, P.
    Fumagalli, D.
    Del Rosso, R.
    Centola, P.
    Journal of thermal analysis, 1996, 47 (01): : 227 - 234