We consider the Cauchy problem for a semilinear heat equation with a supercritical power nonlinearity. It is known that the asymptotic behavior of solutions in time is determined by the decay rate of their initial values in space. In particular, if an initial value decays like a radial steady state, then the corresponding solution converges to that steady state. In this paper we consider solutions whose initial values decay in an anisotropic way. We show that each such solution converges to a steady state which is explicitly determined by an average formula. For a proof, we first consider the linearized equation around a singular steady state, and find a self-similar solution with a specific asymptotic behavior. Then we construct suitable comparison functions by using the self-similar solution, and apply our previous results on global stability and quasi-convergence of solutions.
机构:
Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, JapanUniv Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
Hisa, Kotaro
Ishige, Kazuhiro
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, JapanUniv Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
Ishige, Kazuhiro
Takahashi, Jin
论文数: 0引用数: 0
h-index: 0
机构:
Tokyo Inst Technol, Dept Math & Comp Sci, Meguro Ku, 2-12-1 Ookayama, Tokyo 1528552, JapanUniv Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan