Tractability of integration in non-periodic and periodic weighted tensor product hilbert spaces

被引:23
|
作者
Sloan, IH [1 ]
Wozniakowski, H
机构
[1] Univ New S Wales, Sch Math, Sydney, NSW 2052, Australia
[2] Columbia Univ, Dept Comp Sci, New York, NY 10027 USA
[3] Univ Warsaw, Inst Appl Math & Mech, PL-02097 Warsaw, Poland
基金
澳大利亚研究理事会; 美国国家科学基金会;
关键词
D O I
10.1006/jcom.2001.0626
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study strong tractability and tractability of multivariate integration in the worst case setting. This problem is considered in weighted tensor product reproducing kernel Hilbert spaces. We analyze three variants of the classical Sobolev space of non-periodic and periodic functions whose first mixed derivatives are square integrable. We obtain necessary and sufficient conditions on strong tractability and tractability in terms of the weights of the spaces. For the three Sobolev spaces periodicity has no significant effect on strong tractability and tractability. In contrast, for general reproducing kernel Hilbert spaces anything can happen: we may have strong tractability or tractability for the non-periodic case and intractability for the periodic one, or vice versa. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:479 / 499
页数:21
相关论文
共 50 条
  • [41] ON PERIODIC AND NON-PERIODIC SPACE FILLINGS OF IEM OBTAINED BY PROJECTION
    KRAMER, P
    NERI, R
    LECTURE NOTES IN PHYSICS, 1984, 201 : 420 - 422
  • [42] Non-periodic responses of the Izhikevich neuron model to periodic inputs
    Tsukamoto, Yota
    Tsushima, Honami
    Ikeguchi, Tohru
    IEICE NONLINEAR THEORY AND ITS APPLICATIONS, 2022, 13 (02): : 367 - 372
  • [43] FACTORIZATION OF SPECIAL SYMMETRIC PERIODIC AND NON-PERIODIC QUINDIAGONAL MATRICES
    EVANS, DJ
    HADJIDIMOS, A
    COMPUTING, 1979, 21 (03) : 259 - 266
  • [44] Boolean Approximation in Periodic Hilbert Spaces
    Delvos, Franz-J.
    RESULTS IN MATHEMATICS, 2009, 53 (3-4) : 237 - 244
  • [45] Boolean Approximation in Periodic Hilbert Spaces
    Franz-J. Delvos
    Results in Mathematics, 2009, 53 : 237 - 244
  • [46] Convergence of non-periodic infinite products of orthogonal projections and nonexpansive operators in Hilbert space
    Pustylnik, Evgeniy
    Reich, Simeon
    Zaslavski, Alexander J.
    JOURNAL OF APPROXIMATION THEORY, 2012, 164 (05) : 611 - 624
  • [47] Algebras with non-periodic bounded modules
    Erdmann, Karin
    JOURNAL OF ALGEBRA, 2017, 475 : 308 - 326
  • [48] EXTENDED STATES IN NON-PERIODIC SUPERLATTICES
    LARUELLE, F
    PAQUET, D
    ETIENNE, B
    SUPERLATTICES AND MICROSTRUCTURES, 1989, 5 (04) : 495 - 498
  • [49] Application of compensators for non-periodic currents
    Tolbert, LM
    Xu, Y
    Chen, JQ
    Peng, FZ
    Chiasson, JN
    PESC'03: 2003 IEEE 34TH ANNUAL POWER ELECTRONICS SPECIALISTS CONFERENCE, VOLS 1-4, CONFERENCE PROCEEDINGS, 2003, : 1525 - 1530
  • [50] Frustration and defects in non-periodic solids
    Mosseri, Remy
    Sadoc, Jean-Francois
    COMPTES RENDUS PHYSIQUE, 2014, 15 (01) : 90 - 99