Tractability of integration in non-periodic and periodic weighted tensor product hilbert spaces

被引:23
|
作者
Sloan, IH [1 ]
Wozniakowski, H
机构
[1] Univ New S Wales, Sch Math, Sydney, NSW 2052, Australia
[2] Columbia Univ, Dept Comp Sci, New York, NY 10027 USA
[3] Univ Warsaw, Inst Appl Math & Mech, PL-02097 Warsaw, Poland
基金
澳大利亚研究理事会; 美国国家科学基金会;
关键词
D O I
10.1006/jcom.2001.0626
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study strong tractability and tractability of multivariate integration in the worst case setting. This problem is considered in weighted tensor product reproducing kernel Hilbert spaces. We analyze three variants of the classical Sobolev space of non-periodic and periodic functions whose first mixed derivatives are square integrable. We obtain necessary and sufficient conditions on strong tractability and tractability in terms of the weights of the spaces. For the three Sobolev spaces periodicity has no significant effect on strong tractability and tractability. In contrast, for general reproducing kernel Hilbert spaces anything can happen: we may have strong tractability or tractability for the non-periodic case and intractability for the periodic one, or vice versa. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:479 / 499
页数:21
相关论文
共 50 条
  • [1] Conditions for tractability of the weighted Lp-discrepancy and integration in non-homogeneous tensor product spaces
    Novak, Erich
    Pillichshammer, Friedrich
    MONATSHEFTE FUR MATHEMATIK, 2025, 206 (02): : 449 - 470
  • [2] On embeddings of weighted tensor product Hilbert spaces
    Hefter, Mario
    Ritter, Klaus
    JOURNAL OF COMPLEXITY, 2015, 31 (03) : 405 - 423
  • [3] Some periodic and non-periodic recursions
    Csörnyei, M
    Laczkovich, M
    MONATSHEFTE FUR MATHEMATIK, 2001, 132 (03): : 215 - 236
  • [4] Some Periodic and Non-Periodic Recursions
    M. Csörnyei
    M. Laczkovich
    Monatshefte für Mathematik, 2001, 132 : 215 - 236
  • [5] Lattice rules in non-periodic subspaces of Sobolev spaces
    Takashi Goda
    Kosuke Suzuki
    Takehito Yoshiki
    Numerische Mathematik, 2019, 141 : 399 - 427
  • [6] Understanding Periodic and Non-periodic Chemistry in Periodic Tables
    Cao, Changsu
    Vernon, Rene E.
    Schwarz, W. H. Eugen
    Li, Jun
    FRONTIERS IN CHEMISTRY, 2021, 8
  • [7] Lattice rules in non-periodic subspaces of Sobolev spaces
    Goda, Takashi
    Suzuki, Kosuke
    Yoshiki, Takehito
    NUMERISCHE MATHEMATIK, 2019, 141 (02) : 399 - 427
  • [8] Tractability of Multivariate integration for periodic functions
    Hickernell, FJ
    Wozniakowski, H
    JOURNAL OF COMPLEXITY, 2001, 17 (04) : 660 - 682
  • [9] Tractability of approximation and integration for weighted tensor product problems over unbounded domains
    Wasilkowski, GW
    Wozniakowski, H
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 2000, 2002, : 497 - 522
  • [10] Algorithms for processing periodic and non-periodic signals
    C S Jog
    Sādhanā, 48