Generating chaos for a class of linear switching control systems: A hybrid approach

被引:6
|
作者
Zhang, Yuping [1 ,2 ,4 ]
Shi, Peng [2 ,3 ]
Zhu, Hong [1 ]
Hu, Jiangping [1 ]
Zeng, Yong [1 ]
机构
[1] Univ Elect Sci & Technol, Sch Automat Engn, Chengdu 611731, Sichuan, Peoples R China
[2] Univ Adelaide, Sch Elect & Elect Engn, Adelaide, SA 5005, Australia
[3] Victoria Univ, Coll Engn & Sci, Melbourne, Vic 8001, Australia
[4] Zhejiang Tianhuang Sci & Technol Ind Co Ltd, Hangzhou 310030, Zhejiang, Peoples R China
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
POSITIVE LYAPUNOV EXPONENTS; ATTRACTORS; CHAOTIFICATION; SYNCHRONIZATION;
D O I
10.1016/j.jfranklin.2015.10.007
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates a class of linear continuous-time "periodic" switching systems and proposes a new approach to generate chaos by designing a hybrid switching rule. First, Lyapunov exponents of the system are derived by extending the Floquet theorem to a class of linear continuous-time switching systems. Then, a novel switching rule is proposed to gain global boundedness property as well as the required placement of Lyapunov exponents for chaos. A numerical example is given to illustrate the chaotic dynamic behavior of the generated system. Furthermore, the corresponding bifurcation diagrams are sketched, which, together with other phase portraits, clearly verify the validity of the main result. (C) 2015 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:5853 / 5865
页数:13
相关论文
共 50 条
  • [31] Stability and switching control design issues for a class of discrete time hybrid systems
    Zhivoglyadov, PV
    Middleton, RH
    AUTOMATICA, 2003, 39 (06) : 981 - 987
  • [32] OBSERVER-BASED CONTROL FOR A CLASS OF HYBRID LINEAR AND NONLINEAR SYSTEMS
    Alessandri, A.
    Bedouhene, F.
    Bouhadjra, D.
    Zemouche, A.
    Bagnerini, P.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (04): : 1213 - 1231
  • [33] CONTROL VIA DECOUPLING OF A CLASS OF SECOND ORDER LINEAR HYBRID SYSTEMS
    Russell, David L.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2014, 7 (06): : 1321 - 1334
  • [34] A Switching Control Approach for Linear Systems Subject to Asymmetric Actuator Saturation
    Yuan Chengzhi
    Wu Fen
    2014 33RD CHINESE CONTROL CONFERENCE (CCC), 2014, : 3959 - 3964
  • [35] Generating chaos via decentralized linear state feedback and a class of nonlinear functions
    Lu, JG
    CHAOS SOLITONS & FRACTALS, 2005, 25 (02) : 403 - 413
  • [36] Stability control for a class of complex chaos systems
    Zhang, Yingwei
    Qin, S. Joe
    Hesketh, Tim
    CHAOS SOLITONS & FRACTALS, 2009, 39 (03) : 1463 - 1471
  • [37] Switching control with learning for a class of systems
    Zhang, X
    Nair, SS
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2003, 125 (03): : 448 - 450
  • [38] Optimal control for a class of switching systems
    Akar, M
    Mitra, U
    Özgüner, U
    PROCEEDINGS OF THE 2000 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2000, : 2697 - 2701
  • [39] An occasional linear feedback approach to control chaos
    Li, Guo-Hui
    Zhou, Shi-Ping
    Xu, De-Ming
    Lai, Jian-Wen
    Wuli Xuebao/Acta Physica Sinica, 2000, 49 (11): : 2127 - 2128
  • [40] An occasional linear feedback approach to control chaos
    Li, GH
    Zhou, SP
    Xu, DM
    Lai, JW
    ACTA PHYSICA SINICA, 2000, 49 (11) : 2123 - 2128