overdispersion;
random effects GLM;
EM algorithm;
mixture model;
D O I:
10.1007/BF00140869
中图分类号:
TP301 [理论、方法];
学科分类号:
081202 ;
摘要:
This paper presents an EM algorithm for maximum likelihood estimation in generalized linear models with overdispersion. The algorithm is initially derived as a form of Gaussian quadrature assuming a normal mixing distribution, but with only slight variation it can be used for a completely unknown mixing distribution, giving a straightforward method for the fully non-parametric ML estimation of this distribution. This is of value because the ML estimates of the GLM parameters may be sensitive to the specification of a parametric form for the mixing distribution. A listing of a GLIM4 algorithm for fitting the overdispersed binomial logit model is given in an appendix. A simple method is given for obtaining correct standard errors for parameter estimates when using the EM algorithm. Several examples are discussed.
机构:
Inst Social & Prevent Med, Lausanne, Switzerland
Nice Comp, Le Mont Sur Lausanne, SwitzerlandInst Social & Prevent Med, Lausanne, Switzerland
Marazzi, Alfio
Valdora, Marina
论文数: 0引用数: 0
h-index: 0
机构:
Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, Buenos Aires, DF, Argentina
Univ Buenos Aires, Fac Ciencias Exactas & Nat, Inst Calculo, Buenos Aires, DF, ArgentinaInst Social & Prevent Med, Lausanne, Switzerland
Valdora, Marina
Yohai, Victor
论文数: 0引用数: 0
h-index: 0
机构:
Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, Buenos Aires, DF, Argentina
Univ Buenos Aires, Fac Ciencias Exactas & Nat, Inst Calculo, Buenos Aires, DF, Argentina
Consejo Nacl Invest Cient & Tecn, Buenos Aires, DF, ArgentinaInst Social & Prevent Med, Lausanne, Switzerland
Yohai, Victor
Amiguet, Michael
论文数: 0引用数: 0
h-index: 0
机构:
Inst Social & Prevent Med, Lausanne, SwitzerlandInst Social & Prevent Med, Lausanne, Switzerland