Methanol synthesis from CO2 hydrogenation over a Pd4/In2O3 model catalyst: A combined DFT and kinetic study

被引:201
|
作者
Ye, Jingyun [1 ,2 ]
Liu, Chang-jun [1 ]
Mei, Donghai [3 ]
Ge, Qingfeng [1 ,2 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Tianjin 300072, Peoples R China
[2] So Illinois Univ, Dept Chem & Biochem, Carbondale, IL 62901 USA
[3] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA
基金
中国国家自然科学基金;
关键词
Methanol synthesis; Carbon dioxide; Indium oxide; Palladium; Density functional theory; Kinetic modeling; SUPPORTED PD; REFORMING ACTIVITY; METAL-CLUSTERS; CARBON-DIOXIDE; ADSORPTION; ENERGY; FORMATE; ATOM; ZN; DEHYDROGENATION;
D O I
10.1016/j.jcat.2014.06.002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Methanol synthesis from CO2 hydrogenation on a model Pd/In2O3 catalyst, i.e. Pd-4/In2O3, has been investigated using density functional theory (DFT) and microkinetic modeling. Three possible routes in the reaction network of CO2 + H-2 -> CH3OH + H2O have been examined. Our DFT results show that the HCOO route competes with the RWGS route whereas a high activation barrier blocked the HCOOH route kinetically. The DFT results also suggest that H2COO* + H* <-> H2CO* + OH* and cis-COOH* + H* <-> CO* + H2O* are the rate-limiting steps in the HCOO route and the RWGS route, respectively. Microkinetic modeling results demonstrate that the HCOO route is the dominant pathway for forming methanol from CO2 hydrogenation. Furthermore, the activation of the H adatom on the Pd cluster and the presence of H2O on the In2O3 substrate play important roles in promoting methanol production. The hydroxyl adsorbed at the interface of Pd-4/In2O3 induces structural transformation of the supported Pd-4 cluster from a butterfly shape into a tetrahedron one. This structural change not only indicates the dynamical nature of the supported nanocatalysts during the reaction but also causes the final hydrogenation step to change from CH3O to H2COH. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:44 / 53
页数:10
相关论文
共 50 条
  • [21] CO2 Hydrogenation to Methanol over In2O3: The Size Effect
    Wu, Linlin
    Zou, Rui
    Shen, Chenyang
    Liu, Chang-jun
    ENERGY & FUELS, 2023, 37 (23) : 18120 - 18127
  • [22] Solid-State Synthesis of Pd/In2O3 Catalysts for CO2 Hydrogenation to Methanol
    Guanfeng Tian
    Youqing Wu
    Shiyong Wu
    Sheng Huang
    Jinsheng Gao
    Catalysis Letters, 2023, 153 : 903 - 910
  • [23] Solid-State Synthesis of Pd/In2O3 Catalysts for CO2 Hydrogenation to Methanol
    Tian, Guanfeng
    Wu, Youqing
    Wu, Shiyong
    Huang, Sheng
    Gao, Jinsheng
    CATALYSIS LETTERS, 2023, 153 (03) : 903 - 910
  • [24] DFT-based microkinetic studies on methanol synthesis from CO2 hydrogenation over In2O3 and Zr-In2O3 catalysts
    Li, Kun
    Wei, Zhangqian
    Chang, Qingyu
    Li, Shenggang
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (21) : 14961 - 14968
  • [25] A DFT Study of Methanol Synthesis from CO2 Hydrogenation on the Pd(111) Surface
    Zhang, Minhua
    Wu, Yufei
    Dou, Maobin
    Yu, Yingzhe
    CATALYSIS LETTERS, 2018, 148 (09) : 2935 - 2944
  • [26] A DFT Study of Methanol Synthesis from CO2 Hydrogenation on the Pd(111) Surface
    Minhua Zhang
    Yufei Wu
    Maobin Dou
    Yingzhe Yu
    Catalysis Letters, 2018, 148 : 2935 - 2944
  • [27] Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol
    Yang F.
    Zhao S.
    Zhou W.
    Ni Z.
    Huagong Xuebao/CIESC Journal, 2023, 74 (08): : 3366 - 3374
  • [28] A DFT study of methanol synthesis from CO2 hydrogenation on Cu/ZnO catalyst
    Wang, Xingzi
    Zhang, Hai
    Qin, Huang
    Wu, Kunming
    Wang, Kai
    Ma, Junfang
    Fan, Weidong
    FUEL, 2023, 346
  • [29] Efficient hydrogenation of CO2 to methanol over Pd/In2O3/SBA-15 catalysts
    Jiang, Haoxi
    Lin, Jing
    Wu, Xiaohui
    Wang, Wenyi
    Chen, Yifei
    Zhang, Minhua
    JOURNAL OF CO2 UTILIZATION, 2020, 36 : 33 - 39
  • [30] CO2 hydrogenation to methanol over Rh/In2O3–ZrO2 catalyst with improved activity
    Zhe Lu
    Jing Wang
    Kaihang Sun
    Shilong Xiong
    Zhitao Zhang
    Chang-jun Liu
    Green Chemical Engineering, 2022, 3 (02) : 165 - 170