Cytosolic carbonic anhydrase II (CAII) and the cytoplasmic C-terminal tails of chloride/bicarbonate anion exchange (AE) proteins associate to form a bicarbonate transport metabolon, which maximizes the bicarbonate transport rate. To determine whether cell surface-anchored carbonic anhydrase IV (CAIV) interacts with AE proteins to accelerate the bicarbonate transport rate, AE1-mediated bicarbonate transport was monitored in transfected HEK293 cells. Expression of the inactive CAII V143Y mutant blocked the interaction between endogenous cytosolic CAII and AE1, AE2, and AE3 and inhibited their transport activity (53 +/- 3, 49 +/- 10, and 35 +/- 1% inhibition, respectively). However, in the presence of V143Y CAII, expression of CAIV restored full functional activity to AE1, AE2, and AE3 (AE1, 101 3; AE2, 85 +/- 5; AE3, 108 +/- 1%). In Triton X-100 extracts of transfected HEK293 cells, resolved by sucrose gradient ultracentrifugation, CAIV recruitment to the position of AE1 suggested a physical interaction between CAIV and AE1. Gel overlay assays showed a specific interaction between CAIV and AE1, AE2, and AE3. Glutathione S-transferase pull-down assays revealed that the interaction between CAIV and AE1 occurs on the large fourth extracellular loop of AE1. We conclude that AE1 and CAIV interact on extracellular loop 4 of AE 1, forming the extracellular component of a bicarbonate transport metabolon, which accelerates the rate of AE-mediated bicarbonate transport.