Advancing projections of phytoplankton responses to climate change through ensemble modelling

被引:76
|
作者
Trolle, Dennis [1 ,2 ]
Elliott, J. Alex [3 ]
Mooij, Wolf M. [4 ,5 ]
Janse, Jan H. [4 ,6 ]
Bolding, Karsten [1 ,7 ]
Hamilton, David P. [8 ]
Jeppesen, Erik [1 ,2 ,9 ]
机构
[1] Aarhus Univ, Dept Biosci, DK-8600 Silkeborg, Denmark
[2] Sino Danish Ctr Educ & Res, Beijing, Peoples R China
[3] Ctr Ecol & Hydrol, Algal Modelling Unit, Lake Ecosystem Grp, Lancaster LA1 4AP, England
[4] Netherlands Inst Ecol, NIOO KNAW, Dept Aquat Ecol, NL-6700 AB Wageningen, Netherlands
[5] Wageningen Univ, Dept Aquat Ecol & Water Qual Management, NL-6700 AA Wageningen, Netherlands
[6] PBL Netherlands Environm Assessment Agcy, NL-3720 AH Bilthoven, Netherlands
[7] Bolding & Burchard ApS, DK-5466 Asperup, Denmark
[8] Univ Waikato, Environm Res Inst, Hamilton 3240, New Zealand
[9] Greenland Inst Nat Resources, GCRC, Nuuk 3900, Greenland
关键词
Future climate; Cyanobacteria; Water resources; Ecosystem modelling; SHALLOW LAKES; MULTIMODEL ENSEMBLES; ENVIRONMENTAL-CHANGE; COMMUNITY STRUCTURE; CYANOBACTERIA; RESTORATION; PREDICTIONS; FRAMEWORK; DYNAMICS; BLOOMS;
D O I
10.1016/j.envsoft.2014.01.032
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A global trend of increasing health hazards associated with proliferation of toxin-producing cyanobacteria makes the ability to project phytoplankton dynamics of paramount importance. Whilst ensemble (multi-)modelling approaches have been used for a number of years to improve the robustness of weather forecasts this approach has until now never been adopted for ecosystem modelling. We show that the average simulated phytoplankton biomass derived from three different aquatic ecosystem models is generally superior to any of the three individual models in describing observed phytoplankton biomass in a typical temperate lake ecosystem, and we simulate a series of climate change projections. While this is the first multi-model ensemble approach applied for some of the most complex aquatic ecosystem models available, we consider it sets a precedent for what will become commonplace methodology in the future, as it enables increased robustness of model projections, and scenario uncertainty estimation due to differences in model structures. (C) 2014 Elsevier Ltd. All rights reserved.
引用
下载
收藏
页码:371 / 379
页数:9
相关论文
共 50 条
  • [31] Climate change impact on groundwater levels: ensemble modelling of extreme values
    Kidmose, J.
    Refsgaard, J. C.
    Troldborg, L.
    Seaby, L. P.
    Escriva, M. M.
    [J]. HYDROLOGY AND EARTH SYSTEM SCIENCES, 2013, 17 (04) : 1619 - 1634
  • [32] Impacts of climate change on the state of Indiana: ensemble future projections based on statistical downscaling
    Alan F. Hamlet
    Kyuhyun Byun
    Scott M. Robeson
    Melissa Widhalm
    Michael Baldwin
    [J]. Climatic Change, 2020, 163 : 1881 - 1895
  • [33] Impacts of climate change on crop evapotranspiration with ensemble GCM projections in the North China Plain
    Xingguo Mo
    Ruiping Guo
    Suxia Liu
    Zhonghui Lin
    Shi Hu
    [J]. Climatic Change, 2013, 120 : 299 - 312
  • [34] Impacts of climate change on crop evapotranspiration with ensemble GCM projections in the North China Plain
    Mo, Xingguo
    Guo, Ruiping
    Liu, Suxia
    Lin, Zhonghui
    Hu, Shi
    [J]. CLIMATIC CHANGE, 2013, 120 (1-2) : 299 - 312
  • [35] Impacts of climate change on the state of Indiana: ensemble future projections based on statistical downscaling
    Hamlet, Alan F.
    Byun, Kyuhyun
    Robeson, Scott M.
    Widhalm, Melissa
    Baldwin, Michael
    [J]. CLIMATIC CHANGE, 2020, 163 (04) : 1881 - 1895
  • [36] How does the CMIP6 ensemble change the picture for European climate projections?
    Palmer, T. E.
    Booth, B. B. B.
    McSweeney, C. F.
    [J]. ENVIRONMENTAL RESEARCH LETTERS, 2021, 16 (09)
  • [37] Upgrades to the reliability ensemble averaging method for producing probabilistic climate-change projections
    Xu, Ying
    Gao, Xuejie
    Giorgi, Filippo
    [J]. CLIMATE RESEARCH, 2010, 41 (01) : 61 - 81
  • [38] Multi-model ensemble projections of climate change effects on global marine biodiversity
    Jones, Miranda C.
    Cheung, William W. L.
    [J]. ICES JOURNAL OF MARINE SCIENCE, 2015, 72 (03) : 741 - 752
  • [39] Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change
    Lotze, Heike K.
    Tittensor, Derek P.
    Bryndum-Buchholz, Andrea
    Eddy, Tyler D.
    Cheung, William W. L.
    Galbraith, Eric D.
    Barange, Manuel
    Barrier, Nicolas
    Bianchi, Daniele
    Blanchard, Julia L.
    Bopp, Laurent
    Buchner, Matthias
    Bulman, Catherine M.
    Carozza, David A.
    Christensen, Villy
    Coll, Marta
    Dunne, John P.
    Fulton, Elizabeth A.
    Jennings, Simon
    Jones, Miranda C.
    Mackinson, Steve
    Maury, Olivier
    Niiranen, Susa
    Oliveros-Ramos, Ricardo
    Roy, Tilla
    Fernandes, Jose A.
    Schewe, Jacob
    Shin, Yunne-Jai
    Silva, Tiago A. M.
    Steenbeek, Jeroen
    Stock, Charles A.
    Verley, Philippe
    Volkholz, Jan
    Walker, Nicola D.
    Worm, Boris
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (26) : 12907 - 12912
  • [40] A multi-physics ensemble of regional climate change projections over the Iberian Peninsula
    Sonia Jerez
    Juan Pedro Montavez
    Juan Jose Gomez-Navarro
    Raquel Lorente-Plazas
    Juan Andres Garcia-Valero
    Pedro Jimenez-Guerrero
    [J]. Climate Dynamics, 2013, 41 : 1749 - 1768