Direct minimization of error rates in multivariate classification

被引:7
|
作者
Röhl, MC [1 ]
Weihs, C [1 ]
Theis, W [1 ]
机构
[1] Univ Dortmund, Fachbereich Stat, D-44221 Dortmund, Germany
关键词
classification; discriminant analysis; error rate; simulated annealing; user preferences;
D O I
10.1007/s001800200089
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a computer intensive method for linear dimension reduction that minimizes the classification error directly. Simulated annealing (Bohachevsky et al. 1986), a modern optimization technique, is used to solve this problem effectively. This approach easily allows user preferences to be incorporated by means of penalty terms. Simulations and a real world example demonstrate the superiority of this optimal classification to classical discriminant analysis (McLachlan 1992). Special emphasis is given to the case when discriminant analysis collapses.
引用
收藏
页码:29 / 45
页数:17
相关论文
共 50 条