Geodesic distances on density matrices

被引:17
|
作者
Jencová, A [1 ]
机构
[1] Slovak Acad Sci, Inst Math, SK-81473 Bratislava, Slovakia
关键词
D O I
10.1063/1.1689000
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We find an upper bound for geodesic distances associated to monotone Riemannian metrics on positive definite matrices and density matrices. (C) 2004 American Institute of Physics.
引用
收藏
页码:1787 / 1794
页数:8
相关论文
共 50 条
  • [41] A minimalistic approach for fast computation of geodesic distances on triangular meshes
    Romero Calla, Luciano A.
    Fuentes Perez, Lizeth J.
    Montenegro, Anselmo A.
    COMPUTERS & GRAPHICS-UK, 2019, 84 : 77 - 92
  • [42] Generic density of geodesic nets
    Yevgeny Liokumovich
    Bruno Staffa
    Selecta Mathematica, 2024, 30
  • [43] GEODIST: A C++ program for calculating geodesic distances with a shapefile
    Seong, Jeong Chang
    Choi, Jinmu
    COMPUTERS & GEOSCIENCES, 2007, 33 (05) : 705 - 708
  • [44] Generic density of geodesic nets
    Liokumovich, Yevgeny
    Staffa, Bruno
    SELECTA MATHEMATICA-NEW SERIES, 2024, 30 (01):
  • [45] Convex Quadratic Programming for Computing Geodesic Distances on Triangle Meshes
    Chen, Shuangmin
    Hei, Nailei
    Hu, Shun
    Yue, Zijia
    He, Ying
    MATHEMATICS, 2024, 12 (07)
  • [46] Geodesic distances in the intrinsic dimensionality estimation using packing numbers
    Karbauskaite, Rasa
    Dzemyda, Gintautas
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2014, 19 (04): : 578 - 591
  • [47] Nonlinear projection using geodesic distances and the neural gas network
    Estevez, Pablo A.
    Chong, Andres M.
    Held, Claudio M.
    Perez, Claudio A.
    ARTIFICIAL NEURAL NETWORKS - ICANN 2006, PT 1, 2006, 4131 : 464 - 473
  • [48] Transport distances and geodesic convexity for systems of degenerate diffusion equations
    Jonathan Zinsl
    Daniel Matthes
    Calculus of Variations and Partial Differential Equations, 2015, 54 : 3397 - 3438
  • [49] Geodesic Lagrangian Monte Carlo over the space of positive definite matrices: with application to Bayesian spectral density estimation
    Holbrook, Andrew
    Lan, Shiwei
    Vandenberg-Rodes, Alexander
    Shahbaba, Babak
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2018, 88 (05) : 982 - 1002
  • [50] Approximate geodesic distances reveal biologically relevant structures in microarray data
    Nilsson, J
    Fioretos, T
    Höglund, M
    Fontes, M
    BIOINFORMATICS, 2004, 20 (06) : 874 - 880