A high-temperature, thermal non-equilibrium equation of state for ammonia

被引:4
|
作者
Allison, D. L. [1 ]
Mikellides, P. G. [1 ]
机构
[1] Arizona State Univ, Dept Mech & Aerosp Engn, Tempe, AZ 85287 USA
关键词
ammonia; electric rocket propellant; equation of state; high-temperature thermochemical model; thermal non-equilibrium;
D O I
10.1007/s10765-006-0065-y
中图分类号
O414.1 [热力学];
学科分类号
摘要
The engineering applications of ammonia extend far beyond the pressure and temperature ranges for which thermodynamic models currently exist in the literature. Thus, a thermal non-equilibrium thermochemical model was developed to compute the composition and thermodynamic properties of ammonia for an extended temperature and pressure range that includes ionization reactions. Thermal non-equilibrium between electrons and heavy particles was included and is presented for ratios of 1/2, 1, 2, and 3. The fourteen-equation nonlinear system produced under the assumptions of ideal gas and two-temperature local thermodynamic equilibrium was solved numerically using a Newton-Raphson method. The thermochemical model is verified for both the composition and thermodynamic properties by comparisons to existing thermochemical models in the literature. These comparisons verify the model for the available, yet limited, temperature and density ranges. Analysis of the composition and thermodynamic properties as a function of the independent properties confirms the necessity for such a model as part of rigorous computations with computational fluid dynamics (CFD) or magnetohydrodynamics (MHD) computer codes. The model can be easily cast in tabular form to complement the set of conservation equations utilized by such codes.
引用
收藏
页码:794 / 819
页数:26
相关论文
共 50 条
  • [21] Ultrafast optical spectroscopy of strongly correlated materials and high-temperature superconductors: a non-equilibrium approach
    Giannetti, Claudio
    Capone, Massimo
    Fausti, Daniele
    Fabrizio, Michele
    Parmigiani, Fulvio
    Mihailovic, Dragan
    [J]. ADVANCES IN PHYSICS, 2016, 65 (02) : 58 - 238
  • [22] Phase Transformations in High-Temperature Fiber Materials Exposed to Non-Equilibrium Flow of Heat and Light
    V. G. Babashov
    S. Kh. Suleimanov
    S. Yu. Skripachev
    O. V. Basargin
    G. Yu. Lyulyukina
    [J]. Glass and Ceramics, 2020, 76 : 374 - 380
  • [23] Quadrant decomposition analysis of fluctuations in high-temperature turbulent boundary layer with chemical non-equilibrium
    Liu P.
    Yuan X.
    Liang F.
    Li C.
    Sun D.
    [J]. Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2021, 42
  • [24] Pulsed non-equilibrium MHD generator with application of self-propagating high-temperature synthesis
    Novikov, VA
    [J]. 11TH IEEE INTERNATIONAL PULSED POWER CONFERENCE - DIGEST OF TECHNICAL PAPERS, VOLS. 1 & 2, 1997, : 1592 - 1595
  • [25] Analysis of the response time in high-temperature LWIR HgCdTe photodiodes operating in non-equilibrium mode
    Kopytko, M.
    Jozwikowski, K.
    Madejczyk, P.
    Pusz, W.
    Rogalski, A.
    [J]. INFRARED PHYSICS & TECHNOLOGY, 2013, 61 : 162 - 166
  • [26] NON-EQUILIBRIUM STATE OF IONOSPHERE AND PROBE/RADAR TEMPERATURE DISCREPANCY
    HOEGY, WR
    MAYR, HG
    [J]. TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1971, 52 (04): : 290 - &
  • [27] Application of the Adam-Gibbs equation to the non-equilibrium glassy state
    Hutchinson, JM
    Montserrat, S
    Calventus, Y
    Cortés, P
    [J]. MACROMOLECULES, 2000, 33 (14) : 5252 - 5262
  • [28] ON THE NOTION OF NON-EQUILIBRIUM STATE
    MASLOV, VN
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1989, 32 (04): : 115 - 116
  • [29] On the application of the Adam-Gibbs equation to the non-equilibrium glassy state
    Hutchinson, JM
    Montserrat, S
    Calventus, Y
    Cortés, P
    [J]. JOURNAL OF NON-CRYSTALLINE SOLIDS, 2002, 307 : 412 - 416