Kac-Wakimoto conjecture for the periplectic Lie superalgebra

被引:3
|
作者
Entova-Aizenbud, Inna [1 ]
Serganova, Vera [2 ]
机构
[1] Ben Gurion Univ Negev, Dept Math, Beer Sheva, Israel
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
Periplectic superalgebra; translation functor; Kac-Wakimoto conjecture; REPRESENTATIONS;
D O I
10.1142/S0219498821400156
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove an analogue of the Kac-Wakimoto conjecture for the periplectic Lie superalgebra ?(n), stating that any simple module lying in a block of non-maximal atypicality has superdimension zero.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Translation functors and decomposition numbers for the periplectic Lie superalgebra p(n)
    Balagovic, M.
    Daugherty, Z.
    Entova-Aizenbud, I
    Halacheva, I
    Hennig, J.
    Im, M. S.
    Letzter, G.
    Norton, E.
    Serganova, V
    Stroppel, C.
    [J]. MATHEMATICAL RESEARCH LETTERS, 2019, 26 (03) : 643 - 710
  • [22] Representation theory of superconformal algebras and the Kac-Roan-Wakimoto conjecture
    Arakawa, T
    [J]. DUKE MATHEMATICAL JOURNAL, 2005, 130 (03) : 435 - 478
  • [23] Some new types of exact solutions for the Kac-Wakimoto equation associated with e6(1)
    Wang, Deng-Shan
    Piao, Linhua
    Zhang, Ning
    [J]. PHYSICA SCRIPTA, 2020, 95 (03)
  • [24] Irreducible Wakimoto-like Modules for the Lie Superalgebra D(2, 1;α)
    Jin Cheng
    Zi Ting Zeng
    [J]. Acta Mathematica Sinica, English Series, 2018, 34 : 1578 - 1588
  • [25] Irreducible Wakimoto-like Modules for the Lie Superalgebra D(2,1;)
    Cheng, Jin
    Zeng, Zi Ting
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2018, 34 (10) : 1578 - 1588
  • [26] Irreducible Wakimoto-like Modules for the Lie Superalgebra D(2,1;α)
    Jin CHENG
    Zi Ting ZENG
    [J]. Acta Mathematica Sinica,English Series, 2018, (10) : 1578 - 1588
  • [27] Irreducible Wakimoto-like Modules for the Lie Superalgebra D(2,1;α)
    Jin CHENG
    Zi Ting ZENG
    [J]. Acta Mathematica Sinica., 2018, 34 (10) - 1588
  • [28] The first cohomology of lie superalgebra P(2) with coefficients in kac modules
    Zhang, Zilu
    Sun, Liping
    Li, Zhaoxin
    [J]. COMMUNICATIONS IN ALGEBRA, 2024,
  • [29] Chirality, a new key for the definition of the connection and curvature of a Lie-Kac superalgebra
    Jean Thierry-Mieg
    [J]. Journal of High Energy Physics, 2021
  • [30] Gradings on the Kac superalgebra
    Calderon Martin, Antonio Jesus
    Draper Fontanals, Cristina
    Martin Gonzalez, Candido
    [J]. JOURNAL OF ALGEBRA, 2010, 324 (12) : 3249 - 3261