Compact objects in conformal nonlinear electrodynamics

被引:14
|
作者
Denisova, I. P. [1 ]
Garmaev, B. D. [2 ]
Sokolov, V. A. [2 ]
机构
[1] Natl Res Univ, Moscow Aviat Inst, Volokolamskoe Highway 4, Moscow 125993, Russia
[2] Moscow MV Lomonosov State Univ, Dept Phys, Moscow 119991, Russia
来源
EUROPEAN PHYSICAL JOURNAL C | 2019年 / 79卷 / 06期
关键词
DUALITY ROTATIONS; BLACK-HOLE; HORIZONS;
D O I
10.1140/epjc/s10052-019-7044-5
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In this paper we consider a special case of vacuum nonlinear electrodynamics with a stress-energy tensor conformal to the Maxwell theory. Distinctive features of this model are the absence of a dimensional parameter for the nonlinearity description and a very simple form of the dominant energy condition, which can easily be verified in an arbitrary pseudo-Riemannian space-time with the consequent constraints on the model parameters. In this paper we analyze some properties of astrophysical compact objects coupled to conformal vacuum nonlinear electrodynamics.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] NONLINEAR ELECTRODYNAMICS AND TORSION
    DEANDRADE, LCG
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1990, 105 (12): : 1297 - 1303
  • [42] CONFORMAL WARD IDENTITIES IN MASSIVE QUANTUM ELECTRODYNAMICS
    NIELSEN, NK
    NUCLEAR PHYSICS B, 1973, B 65 (02) : 413 - 426
  • [43] Taub-NUT solutions in conformal electrodynamics
    Bordo, Alvaro Ballon
    Kubiznak, David
    Perche, Tales Rick
    PHYSICS LETTERS B, 2021, 817
  • [44] Nonlinear electrodynamics and cosmology
    Breton, Nora
    SPANISH RELATIVITY MEETING (ERE 2009), 2010, 229
  • [45] Visualizing nonlinear electrodynamics
    Martin, G
    Sterling, I
    VISUALIZATION AND MATHEMATICS: EXPERIMENTS, SIMULATIONS AND ENVIRONMENTS, 1997, : 37 - 51
  • [46] Limits on nonlinear electrodynamics
    Fouche, M.
    Battesti, R.
    Rizzo, C.
    PHYSICAL REVIEW D, 2016, 93 (09)
  • [47] A model of nonlinear electrodynamics
    Kruglov, S. I.
    ANNALS OF PHYSICS, 2015, 353 : 299 - 306
  • [48] Nonlinear electrodynamics with birefringence
    Kruglov, S. I.
    PHYSICS LETTERS A, 2015, 379 (07) : 623 - 625
  • [49] Local nonlinear electrodynamics
    Pereira, D. D.
    Klippert, R.
    PHYSICS LETTERS A, 2010, 374 (41) : 4175 - 4179
  • [50] Remarks on nonlinear electrodynamics
    Gaete, Patricio
    Helayel-Neto, Jose
    EUROPEAN PHYSICAL JOURNAL C, 2014, 74 (11):