Compact objects in conformal nonlinear electrodynamics

被引:14
|
作者
Denisova, I. P. [1 ]
Garmaev, B. D. [2 ]
Sokolov, V. A. [2 ]
机构
[1] Natl Res Univ, Moscow Aviat Inst, Volokolamskoe Highway 4, Moscow 125993, Russia
[2] Moscow MV Lomonosov State Univ, Dept Phys, Moscow 119991, Russia
来源
EUROPEAN PHYSICAL JOURNAL C | 2019年 / 79卷 / 06期
关键词
DUALITY ROTATIONS; BLACK-HOLE; HORIZONS;
D O I
10.1140/epjc/s10052-019-7044-5
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In this paper we consider a special case of vacuum nonlinear electrodynamics with a stress-energy tensor conformal to the Maxwell theory. Distinctive features of this model are the absence of a dimensional parameter for the nonlinearity description and a very simple form of the dominant energy condition, which can easily be verified in an arbitrary pseudo-Riemannian space-time with the consequent constraints on the model parameters. In this paper we analyze some properties of astrophysical compact objects coupled to conformal vacuum nonlinear electrodynamics.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Compact objects in conformal nonlinear electrodynamics
    I. P. Denisova
    B. D. Garmaev
    V. A. Sokolov
    The European Physical Journal C, 2019, 79
  • [2] Relativistic electrodynamics of spinning compact objects
    Kim, HS
    Lee, HM
    Lee, CH
    Lee, HK
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2006, 48 (03) : 352 - 362
  • [3] Conformal invariant vacuum nonlinear electrodynamics
    Denisov, V. I.
    Dolgaya, E. E.
    Sokolov, V. A.
    Denisova, I. P.
    PHYSICAL REVIEW D, 2017, 96 (03)
  • [4] Axial anomaly in nonlinear conformal electrodynamics
    Colipi-Marchant, Francisco
    Corral, Cristobal
    Flores-Alfonso, Daniel
    Sanhueza, Leonardo
    PHYSICAL REVIEW D, 2023, 107 (10)
  • [6] Extended duality condition for conformal vacuum nonlinear electrodynamics
    Sokolov, V. A.
    PHYSICAL REVIEW D, 2021, 104 (12)
  • [7] On self-dual Carrollian conformal nonlinear electrodynamics
    Chen, Bin
    Hou, Jue
    Sun, Haowei
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, (08):
  • [8] Conformal motion for higher-dimensional compact objects
    Zahra, A.
    Mardan, S. A.
    Riaz, Muhammad Bilal
    EUROPEAN PHYSICAL JOURNAL C, 2023, 83 (12):
  • [9] Conformal motion for higher-dimensional compact objects
    A. Zahra
    S. A. Mardan
    Muhammad Bilal Riaz
    The European Physical Journal C, 83
  • [10] Maximally symmetric nonlinear extension of electrodynamics with Galilean conformal symmetries
    Banerjee, Aritra
    Mehra, Aditya
    PHYSICAL REVIEW D, 2022, 106 (08)