Short-Term Intensive Rainfall Forecasting Model Based on a Hierarchical Dynamic Graph Network

被引:2
|
作者
Xie, Huosheng [1 ]
Zheng, Rongyao [1 ]
Lin, Qing [2 ,3 ]
机构
[1] Fuzhou Univ, Coll Comp & Data Sci, Fuzhou 350108, Peoples R China
[2] Fujian Key Lab Severe Weather, Fuzhou 350008, Peoples R China
[3] Fujian Meteorol Observ, Fuzhou 350008, Peoples R China
关键词
short-term intensive rainfall forecast; spatial-temporal sequence prediction; hierarchical dynamic graph network; graph convolutional network; numerical weather prediction;
D O I
10.3390/atmos13050703
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Accurate short-term forecasting of intensive rainfall has high practical value but remains difficult to achieve. Based on deep learning and spatial-temporal sequence predictions, this paper proposes a hierarchical dynamic graph network. To fully model the correlations among data, the model uses a dynamically constructed graph convolution operator to model the spatial correlation, a recurrent structure to model the time correlation, and a hierarchical architecture built with graph pooling to extract and fuse multi-level feature spaces. Experiments on two datasets, based on the measured cumulative rainfall data at a ground station in Fujian Province, China, and the corresponding numerical weather grid product, show that this method can model various correlations among data more effectively than the baseline methods, achieving further improvements owing to reversed sequence enhancement and low-rainfall sequence removal.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Improved long short-term memory network based short term load forecasting
    Cui, Jie
    Gao, Qiang
    Li, Dahua
    [J]. 2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 4428 - 4433
  • [42] Refining Short-Term Power Load Forecasting: An Optimized Model with Long Short-Term Memory Network
    Hu, Sile
    Cai, Wenbin
    Liu, Jun
    Shi, Hao
    Yu, Jiawei
    [J]. Journal of Computing and Information Technology, 2023, 31 (03) : 151 - 166
  • [43] A hybrid model for spatiotemporal forecasting of PM2.5 based on graph convolutional neural network and long short-term memory
    Qi, Yanlin
    Li, Qi
    Karimian, Hamed
    Liu, Di
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 664 : 1 - 10
  • [44] Attention-Based Gated Recurrent Graph Convolutional Network for Short-Term Traffic Flow Forecasting
    Lou, Ping
    Wu, Zihao
    Hu, Jiwei
    Liu, Quan
    Wei, Qin
    [J]. JOURNAL OF MATHEMATICS, 2023, 2023
  • [45] A forecasting model for wave heights based on a long short-term memory neural network
    Song Gao
    Juan Huang
    Yaru Li
    Guiyan Liu
    Fan Bi
    Zhipeng Bai
    [J]. Acta Oceanologica Sinica, 2021, 40 (01) : 62 - 69
  • [46] Short-term Traffic Flow Forecasting Based on Wavelet Network Model Combined with PSO
    Huang, Yafei
    [J]. INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION, VOL 1, PROCEEDINGS, 2008, : 249 - 253
  • [47] Short-term wind power forecasting model based on temporal convolutional network and Informer
    Gong, Mingju
    Yan, Changcheng
    Xu, Wei
    Zhao, Zhixuan
    Li, Wenxiang
    Liu, Yan
    Li, Sheng
    [J]. ENERGY, 2023, 283
  • [48] Short-Term Load Forecasting Based on RBF Neural Network
    Zhao, Bing
    Liang, Yue
    Gao, Xin
    Liu, Xin
    [J]. 3RD ANNUAL INTERNATIONAL CONFERENCE ON INFORMATION SYSTEM AND ARTIFICIAL INTELLIGENCE (ISAI2018), 2018, 1069
  • [49] Neural Network Based Approach for Short-Term Load Forecasting
    Osman, Zainab H.
    Awad, Mohamed L.
    Mahmoud, Tawfik K.
    [J]. 2009 IEEE/PES POWER SYSTEMS CONFERENCE AND EXPOSITION, VOLS 1-3, 2009, : 1162 - +
  • [50] A forecasting model for wave heights based on a long short-term memory neural network
    Song Gao
    Juan Huang
    Yaru Li
    Guiyan Liu
    Fan Bi
    Zhipeng Bai
    [J]. Acta Oceanologica Sinica, 2021, 40 : 62 - 69