Concentration for a bi-harmonic Schrodinger equation with critical nonlinearity

被引:2
|
作者
Wang, Dong [1 ]
机构
[1] Changzhou Univ, Sch Math & Phys, Changzhou 213164, Jiangsu, Peoples R China
关键词
Nonlinear bi-harmonic Schrodinger equations; Standing waves; Critical point theory; BOUND-STATES; SEMICLASSICAL STATES; POSITIVE SOLUTIONS; STANDING WAVES; EXISTENCE; FIELDS;
D O I
10.1016/j.jmaa.2015.10.048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concerns the following fourth-order problem {epsilon(4)Delta(2)u + V(x)u = P(x)(f(vertical bar u vertical bar) + vertical bar u vertical bar(2*-2))u, x is an element of R-N, u(x) -> 0 as vertical bar x vertical bar -> infinity, where 2* = 2N/ N-4, V and P are spatial distributions of external potentials. By variational methods, the concentration phenomena of the solutions as epsilon -> 0 is considered. (C) 2015 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:380 / 401
页数:22
相关论文
共 50 条
  • [21] Energy scattering for radial focusing inhomogeneous bi-harmonic Schrodinger equations
    Saanouni, Tarek
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (03)
  • [22] Correction to: Local Well-Posedness of a Critical Inhomogeneous Bi-harmonic Schrödinger Equation
    Tarek Saanouni
    Congming Peng
    Mediterranean Journal of Mathematics, 2024, 21
  • [23] ON THE GENERALIZED OF HARMONIC AND BI-HARMONIC MAPS
    Djaa, M.
    Cherif, A. M.
    Zegga, K.
    Ouakkas, S.
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2012, 5 (01): : 90 - 100
  • [24] Blowup for biharmonic Schrodinger equation with critical nonlinearity
    Thanh Viet Phan
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (02):
  • [25] Positive solutions of a Schrodinger equation with critical nonlinearity
    Clapp, M
    Ding, YH
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2004, 55 (04): : 592 - 605
  • [26] SCHRODINGER EQUATION WITH MULTIPARTICLE POTENTIAL AND CRITICAL NONLINEARITY
    Chabrowski, Jan
    Szulkin, Andrzej
    Willem, Michel
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2009, 34 (02) : 201 - 211
  • [27] Existence of solutions for a system of coupled nonlinear stationary bi-harmonic Schrodinger equations
    Alvarez-Caudevilla, P.
    Colorado, E.
    Galaktionov, V. A.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 23 : 78 - 93
  • [28] BI-HARMONIC FUNCTIONS ON GROUPS
    KAIMANOVICH, VA
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 314 (04): : 259 - 264
  • [29] Non-radial solutions to a bi-harmonic equation with negative exponent
    Ali Hyder
    Juncheng Wei
    Calculus of Variations and Partial Differential Equations, 2019, 58
  • [30] Some results on harmonic and bi-harmonic maps
    Cherif, Ahmed Mohammed
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2017, 14 (07)