Concentration for a bi-harmonic Schrodinger equation with critical nonlinearity

被引:2
|
作者
Wang, Dong [1 ]
机构
[1] Changzhou Univ, Sch Math & Phys, Changzhou 213164, Jiangsu, Peoples R China
关键词
Nonlinear bi-harmonic Schrodinger equations; Standing waves; Critical point theory; BOUND-STATES; SEMICLASSICAL STATES; POSITIVE SOLUTIONS; STANDING WAVES; EXISTENCE; FIELDS;
D O I
10.1016/j.jmaa.2015.10.048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concerns the following fourth-order problem {epsilon(4)Delta(2)u + V(x)u = P(x)(f(vertical bar u vertical bar) + vertical bar u vertical bar(2*-2))u, x is an element of R-N, u(x) -> 0 as vertical bar x vertical bar -> infinity, where 2* = 2N/ N-4, V and P are spatial distributions of external potentials. By variational methods, the concentration phenomena of the solutions as epsilon -> 0 is considered. (C) 2015 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:380 / 401
页数:22
相关论文
共 50 条
  • [1] Multiplicity of solutions of the bi-harmonic Schrodinger equation with critical growth
    Zhang, Jian
    Lou, Zhenluo
    Ji, Yanju
    Shao, Wei
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (02):
  • [2] On energy critical inhomogeneous bi-harmonic nonlinear Schrodinger equation
    Saanouni, Tarek
    Ghanmi, Radhia
    ADVANCES IN OPERATOR THEORY, 2024, 9 (01)
  • [3] Local Well-Posedness of a Critical Inhomogeneous Bi-harmonic Schrodinger Equation
    Saanouni, Tarek
    Peng, Congming
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (03)
  • [4] A note on a critical bi-harmonic equation with logarithmic perturbation
    Zhang, Qian
    Han, Yuzhu
    Wang, Jian
    APPLIED MATHEMATICS LETTERS, 2023, 145
  • [5] Classification of nonnegative solutions to a bi-harmonic equation with Hartree type nonlinearity
    Cao, Daomin
    Dai, Wei
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2019, 149 (04) : 979 - 994
  • [6] Radial symmetry of entire solutions of a bi-harmonic equation with exponential nonlinearity
    Guo, Zongming
    Huang, Xia
    Zhou, Feng
    JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 268 (07) : 1972 - 2004
  • [7] Multiplicity of solutions of the bi-harmonic Schrödinger equation with critical growth
    Jian Zhang
    Zhenluo Lou
    Yanju Ji
    Wei Shao
    Zeitschrift für angewandte Mathematik und Physik, 2018, 69
  • [8] ON A BI-HARMONIC EQUATION INVOLVING CRITICAL EXPONENT: EXISTENCE AND MULTIPLICITY RESULTS
    Zakaria Boucheche
    Ridha Yacoub
    Hichem Chtioui
    Acta Mathematica Scientia, 2011, 31 (04) : 1213 - 1244
  • [9] On energy critical inhomogeneous bi-harmonic nonlinear Schrödinger equation
    Tarek Saanouni
    Radhia Ghanmi
    Advances in Operator Theory, 2024, 9
  • [10] ON A BI-HARMONIC EQUATION INVOLVING CRITICAL EXPONENT: EXISTENCE AND MULTIPLICITY RESULTS
    Boucheche, Zakaria
    Yacoub, Ridha
    Chtioui, Hichem
    ACTA MATHEMATICA SCIENTIA, 2011, 31 (04) : 1213 - 1244